Nanomaterials 2013, 3(1), 22-47; doi:10.3390/nano3010022

Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada Present Address: Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
Received: 19 September 2012; in revised form: 12 December 2012 / Accepted: 13 December 2012 / Published: 27 December 2012
PDF Full-text Download PDF Full-Text [1722 KB, uploaded 27 December 2012 14:09 CET]
Abstract: Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
Keywords: solar energy; light harvesting; quantum dots; cadmium sulfide; lead sulfide

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Halim, M.A. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials 2013, 3, 22-47.

AMA Style

Halim MA. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials. 2013; 3(1):22-47.

Chicago/Turabian Style

Halim, Mohammad A. 2013. "Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell." Nanomaterials 3, no. 1: 22-47.

Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert