Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gold Electroless Deposition on Nickel Foam
2.2. Characterization
2.3. Electrochemical Ammonia Synthesis
2.4. Ammonia Detection
3. Results and Discussion
3.1. Morphological Characterization
3.2. Electrochemical Characterization
3.3. Electrochemical Synthesis of Ammonia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, H.; Zhou, Y.; Peng, X.; Luo, Y.; Wang, X.; Liang, S.; Jiang, L. Challenges and Prospects in Artificial Nitrogen Cycle for Energy Decarbonization. Natl. Sci. Open 2023, 2, 20220040. [Google Scholar] [CrossRef]
- Thamdrup, B. New Pathways and Processes in the Global Nitrogen Cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-System Perspective of the Global Nitrogen Cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A Review of the Existing and Alternative Methods for Greener Nitrogen Fixation. Chem. Eng. Process. Process Intensif. 2015, 90, 24–33. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Yu, H.; Xu, Y.; Xue, H.; Li, X.; Wang, H.; Wang, L. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures. ChemSusChem 2018, 11, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 34. [Google Scholar] [CrossRef]
- Dolan, R.H.; Anderson, J.E.; Wallington, T.J. Outlook for Ammonia as a Sustainable Transportation Fuel. Sustain. Energy Fuels 2021, 5, 4830–4841. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S. Recent Advances in Ammonia Synthesis Technologies: Toward Future Zero Carbon Emissions. Int. J. Hydrogen Energy 2023, 48, 11237–11273. [Google Scholar] [CrossRef]
- Wiskich, A.; Rapson, T. Economics of Emerging Ammonia Fertilizer Production Methods—A Role for On-Farm Synthesis? ChemSusChem 2023, e202300565. [Google Scholar] [CrossRef]
- Restelli, F.; Spatolisano, E.; Pellegrini, L.A.; de Angelis, A.R.; Cattaneo, S.; Roccaro, E. Detailed Techno-Economic Assessment of Ammonia as Green H2 Carrier. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Ojelade, O.A.; Zaman, S.F.; Ni, B.J. Green Ammonia Production Technologies: A Review of Practical Progress. J. Environ. Manag. 2023, 342, 118348. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Bhardwaj, S.; Boruah, T.; Dey, R.S. Electrochemical Ammonia Synthesis: Fundamental Practices and Recent Developments in Transition Metal Boride, Carbide and Nitride-Class of Catalysts. Mater. Adv. 2022, 3, 5207–5233. [Google Scholar] [CrossRef]
- Ertl, G. Surface Science and Catalysis—Studies on the Mechanism of Ammonia Synthesis: The P. H. Emmett Award Address. Catal. Rev. 1980, 21, 201–223. [Google Scholar] [CrossRef]
- Ouyang, L.; Liang, J.; Luo, Y.; Zheng, D.; Sun, S.; Liu, Q.; Hamdy, M.S.; Sun, X.; Ying, B. Recent Advances in Electrocatalytic Ammonia Synthesis. Chin. J. Catal. 2023, 50, 6–44. [Google Scholar] [CrossRef]
- Hosono, H. Spiers Memorial Lecture: Catalytic Activation of Molecular Nitrogen for Green Ammonia Synthesis: Introduction and Current Status. Faraday Discuss. 2023, 243, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Klerke, A.; Christensen, C.H.; Nørskov, J.K.; Vegge, T. Ammonia for Hydrogen Storage: Challenges and Opportunities. J. Mater. Chem. 2008, 18, 2304–2310. [Google Scholar] [CrossRef]
- Kaiprathu, A.; Velayudham, P.; Teller, H.; Schechter, A. Mechanisms of Electrochemical Nitrogen Gas Reduction to Ammonia under Ambient Conditions: A Focused Review. J. Solid State Electrochem. 2022, 26, 1897–1917. [Google Scholar] [CrossRef]
- Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J.K. A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2 Reduction. Phys. Chem. Chem. Phys. 2011, 14, 1235–1245. [Google Scholar] [CrossRef]
- Tao, H.; Choi, C.; Ding, L.X.; Jiang, Z.; Han, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A.W.; et al. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem 2019, 5, 204–214. [Google Scholar] [CrossRef]
- Shen, H.; Choi, C.; Masa, J.; Li, X.; Qiu, J.; Jung, Y.; Sun, Z. Electrochemical Ammonia Synthesis: Mechanistic Understanding and Catalyst Design. Chem 2021, 7, 1708–1754. [Google Scholar] [CrossRef]
- Wang, H.; Yang, D.; Liu, S.; Yin, S.; Yu, H.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Amorphous Sulfur Decorated Gold Nanowires as Efficient Electrocatalysts toward Ambient Ammonia Synthesis. ACS Sustain. Chem. Eng. 2019, 7, 19969–19974. [Google Scholar] [CrossRef]
- Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. Small Methods 2018, 2, 1800202. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Wang, Z.; Li, Y.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. Small 2019, 15, 1804769. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ren, T.; Yu, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Anchoring Au Nanoparticles on Bi Ultrathin Nanosheets for Use as an Efficient Heterogeneous Catalyst for Ambient-Condition Electrochemical Ammonia Synthesis. Sustain. Energy Fuels 2020, 4, 4516–4521. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Pang, F.; Quek, D.; Niu, W.; Wang, W.; Chen, P. Facet-Dependent Catalytic Performance of Au Nanocrystals for Electrochemical Nitrogen Reduction. ACS Appl. Mater. Interfaces 2020, 12, 41613–41619. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Guo, H.; Wu, H.; Zhang, F.; Liu, J.; Li, M.; Yang, Y.; Cao, Y.; Yang, G.; Zhou, Y. Boosting Charge-Transfer in Tuned Au Nanoparticles on Defect-Rich TiO2 Nanosheets for Enhancing Nitrogen Electroreduction to Ammonia Production. J. Colloid Interface Sci. 2023, 636, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Dai, Z.; Tian, W.; Wang, P.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Electroreduction of Nitrogen to Ammonia over Bimetallic Mesoporous RuAu Film. Mater. Today Energy 2022, 23, 100920. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Han, M.; Ye, Y.; Zhang, S.; Liu, Y.; Wang, G.; Liang, C.; Zhang, H. Ambient Electrosynthesis of Ammonia Using Core-Shell Structured Au@C Catalyst Fabricated by One-Step Laser Ablation Technique. ACS Appl. Mater. Interfaces 2019, 11, 44186–44195. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Liang, W.; Zhou, G.; Liang, Z.; Wang, Y.; Qu, J.; Sun, Y.; Jiang, L. Three-Phase Electrolysis by Gold Nanoparticle on Hydrophobic Interface for Enhanced Electrochemical Nitrogen Reduction Reaction. Adv. Sci. 2020, 7, 2002630. [Google Scholar] [CrossRef]
- Nazemi, M.; Panikkanvalappil, S.R.; El-Sayed, M.A. Enhancing the Rate of Electrochemical Nitrogen Reduction Reaction for Ammonia Synthesis under Ambient Conditions Using Hollow Gold Nanocages. Nano Energy 2018, 49, 316–323. [Google Scholar] [CrossRef]
- Cai, X.; Iriawan, H.; Yang, F.; Luo, L.; Shen, S.; Shao-Horn, Y.; Zhang, J. Interaction of Ammonia with Nafion and Electrolyte in Electrocatalytic Nitrogen Reduction Study. J. Phys. Chem. Lett. 2021, 12, 6861–6866. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yu, C.; Tan, X.; Han, X.; Huang, H.; Huang, H.; Qiu, J. Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N2 Reduction? Small Methods 2019, 3, 1900474. [Google Scholar] [CrossRef]
- Milazzo, R.G.; Mio, A.M.; D’Arrigo, G.; Spinella, C.; Grimaldi, M.G.; Rimini, E. Electroless Deposition of Gold Investigated with Rutherford Backscattering and Electron Microscopy. In Proceedings of the 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC), Aci Castello, Italy, 12–15 October 2014; pp. 37–40. [Google Scholar] [CrossRef]
- Milazzo, R.G.; D’Arrigo, G.; Spinella, C.; Grimaldi, M.G.; Rimini, E. Ag-Assisted Chemical Etching of (100) and (111) n-Type Silicon Substrates by Varying the Amount of Deposited Metal. J. Electrochem. Soc. 2012, 159, D521–D525. [Google Scholar] [CrossRef]
- Milazzo, R.G.; D’Arrigo, G.; Mio, A.M.; Spinella, C.; Grimaldi, M.G.; Rimini, E. Electroless Deposition of Silver Investigated with Rutherford Backscattering and Electron Microscopy. ECS J. Solid State Sci. Technol. 2014, 3, P235–P242. [Google Scholar] [CrossRef]
- Alia, S.M.; Yan, Y.S.; Pivovar, B.S. Galvanic Displacement as a Route to Highly Active and Durable Extended Surface Electrocatalysts. Catal. Sci. Technol. 2014, 4, 3589–3600. [Google Scholar] [CrossRef]
- Milazzo, R.G.; Privitera, S.M.S.; D’Angelo, D.; Scalese, S.; Di Franco, S.; Maita, F.; Lombardo, S. Spontaneous Galvanic Displacement of Pt Nanostructures on Nickel Foam: Synthesis, Characterization and Use for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 7903–7910. [Google Scholar] [CrossRef]
- Leonardi, M.; Tranchida, G.; Corso, R.; Milazzo, R.G.; Lombardo, S.A.; Privitera, S.M.S. Role of the Membrane Transport Mechanism in Electrochemical Nitrogen Reduction Experiments. Membranes 2022, 12, 969. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jiang, Z.H.; Yao, Z.P.; Song, Y.; Wu, Z.D. Effects of Scan Rate on the Potentiodynamic Polarization Curve Obtained to Determine the Tafel Slopes and Corrosion Current Density. Corros. Sci. 2009, 51, 581–587. [Google Scholar] [CrossRef]
- Tranchida, G.; Milazzo, R.G.; Leonardi, M.; Scalese, S.; Pulvirenti, L.; Condorelli, G.G.; Bongiorno, C.; Lombardo, S.; Privitera, S.M.S. Strategies to Improve the Catalytic Activity of Fe-Based Catalysts for Nitrogen Reduction Reaction. Int. J. Hydrogen Energy 2023, 48, 25328–25338. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Yao, D.; Zheng, Y.; Qiao, S.Z. Electrochemical Nitrogen Reduction: Identification and Elimination of Contamination in Electrolyte. ACS Energy Lett. 2019, 4, 2111–2116. [Google Scholar] [CrossRef]
- Choi, J.; Suryanto, B.H.R.; Wang, D.; Du, H.L.; Hodgetts, R.Y.; Ferrero Vallana, F.M.; MacFarlane, D.R.; Simonov, A.N. Identification and Elimination of False Positives in Electrochemical Nitrogen Reduction Studies. Nat. Commun. 2020, 11, 5546. [Google Scholar] [CrossRef] [PubMed]
- Bolleter, W.T.; Bushman, C.J.; Tidwell, P.W. Spectrophotometric Determination of Ammonia as Indophenol. Anal. Chem. 1961, 33, 592–594. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Ruther, R.E.; Hamers, R.J. Photo-Illuminated Diamond as a Solid-State Source of Solvated Electrons in Water for Nitrogen Reduction. Nat. Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Milazzo, R.G.; Privitera, S.M.S.; Scalese, S.; Lombardo, S.A. Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction. Energies 2019, 12, 3116. [Google Scholar] [CrossRef]
- Khadke, P.; Tichter, T.; Boettcher, T.; Muench, F.; Ensinger, W.; Roth, C. A Simple and Effective Method for the Accurate Extraction of Kinetic Parameters Using Differential Tafel Plots. Sci. Rep. 2021, 11, 8974. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Xi, Z.; Chen, Z.; Guo, S.; Yu, Y.; Zhu, W.; Li, Q.; Zhang, X.; Pan, M.; Lu, G.; et al. A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 5859–5862. [Google Scholar] [CrossRef] [PubMed]
- Tuli, A.; Wei, J.; Shaw, B.; Hopmans, J. In situ monitoring of soil solution nitrate: Proof of concept. Soil Sci. Soc. Am. J. 2009, 73, 501–509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranchida, G.; Milazzo, R.G.; Leonardi, M.; Scalese, S.; Farina, R.A.; Lombardo, S.; Privitera, S.M.S. Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry. Nanomaterials 2023, 13, 2850. https://doi.org/10.3390/nano13212850
Tranchida G, Milazzo RG, Leonardi M, Scalese S, Farina RA, Lombardo S, Privitera SMS. Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry. Nanomaterials. 2023; 13(21):2850. https://doi.org/10.3390/nano13212850
Chicago/Turabian StyleTranchida, Giuseppe, Rachela G. Milazzo, Marco Leonardi, Silvia Scalese, Roberta A. Farina, Salvatore Lombardo, and Stefania M. S. Privitera. 2023. "Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry" Nanomaterials 13, no. 21: 2850. https://doi.org/10.3390/nano13212850