Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Ethosomes® Preparation
2.2.2. Physicochemical Characterization of Ethosomes®
2.2.3. Deformability Test
2.2.4. Rutin Entrapment Efficiency and Loading Degree
2.2.5. Stability Analysis of Ethosomes®
2.2.6. Photostability Test
2.2.7. In Vitro Cellular Studies
2.2.8. In Vivo Anti-Inflammatory Effect on Human Volunteers
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Features of Ethanolic Nanovesicles
3.2. Rutin Entrapment Efficiency and Loading Degree
3.3. Stability Evaluation through Turbiscan Lab Expert Analysis
3.4. UV-Photostability Studies
3.5. In Vitro Cell Study Evaluation
3.6. In Vivo Efficacy on Human Volunteers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krüger, M.; Richter, P.; Strauch, S. Natural Products in Modern Biology: Ancient Wisdom for Today’s Challenges. Biology 2021, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. [Google Scholar] [CrossRef]
- Singhal, M.; Lapteva, M.; Kalia, Y.N. Formulation challenges for 21st century topical and transdermal delivery systems. Expert Opin. Drug Deliv. 2017, 14, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Natsheh, H.; Vettorato, E.; Touitou, E. Ethosomes for Dermal Administration of Natural Active Molecules. Curr. Pharm. Des. 2019, 25, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Ternullo, S.; Basnet, P.; Holsæter, A.M.; Flaten, G.E.; de Weerd, L.; Škalko-Basnet, N. Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. Eur. J. Pharm. Sci. 2018, 125, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A.S. Transdermal applications of ethosomes—A detailed review. J. Liposome Res. 2018, 29, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Touitou, E. Compositions for Applying Active Substances to or through the Skin. U.S. Patent 5,540,934, 30 July 1996. [Google Scholar]
- Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E. Drug Delivery Applications with Ethosomes. J. Biomed. Nanotechnol. 2010, 6, 558–568. [Google Scholar] [CrossRef]
- Godin, B.; Touitou, E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control Release 2004, 94, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Xian, D.; Lai, R.; Song, J.; Xiong, X.; Zhong, J. Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxidat. Med. Cell. Longev. 2019, 2019, 8127362. [Google Scholar] [CrossRef] [Green Version]
- Sivaranjani, N. Role of Reactive Oxygen Species and Antioxidants in Atopic Dermatitis. J. Clin. Diagn. Res. 2013, 7, 2683–2685. [Google Scholar] [CrossRef] [PubMed]
- Lohan, S.B.; Vitt, K.; Scholz, P.; Keck, C.; Meinke, M.C. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation. Chem. Interact. 2018, 280, 1–7. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Nanocarriers for Delivery of Antioxidants on the Skin. Cosmetics 2015, 2, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2016, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habtemariam, S. Rutin as a Natural Therapy for Alzheimer’s Disease: Insights into its Mechanisms of Action. Curr. Med. Chem. 2016, 23, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Mytilineou, C.; Kramer, B.C.; Yabut, J.A. Glutathione depletion and oxidative stress. Park. Relat. Disord. 2002, 8, 385–387. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidat. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef]
- Kohen, R.; Gati, I. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 2000, 148, 149–157. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; Iannone, M.; Fresta, M.; Fiorito, S.; Celia, C.; Paolino, D. In vitro and in vivo trans-epidermal water loss evaluation following topical drug delivery systems application for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2020, 186, 113295. [Google Scholar] [CrossRef]
- Upadhyay, N.; Tata, B.; Kamruddin, M. Depolarized dynamic light scattering study of hybrid silicon oil nanodroplets dispersion. In Proceedings of the International Conference on Nanoscience, Engineering and Technology (ICONSET 2011), Chennai, India, 28–30 November 2011; pp. 133–136. [Google Scholar]
- Bhattacharjee, S. DLS and zeta potential–What they are and what they are not? J. Control Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Cristiano, M.; Mancuso, A.; Giuliano, E.; Cosco, D.; Paolino, D.; Fresta, M. EtoGel for Intra-Articular Drug Delivery: A New Challenge for Joint Diseases Treatment. J. Funct. Biomater. 2021, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Cristiano, M.C.; Cilurzo, F.; Locatelli, M.; Iannotta, D.; Di Marzio, L.; Celia, C.; Paolino, D. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf. B Biointerfaces 2020, 193, 111152. [Google Scholar] [CrossRef] [PubMed]
- Di Marzio, L.; Marianecci, C.; Rinaldi, F.; Esposito, S.; Carafa, M. Deformable Surfactant Vesicles Loading Ammonium Glycyrrhizinate: Characterization and In Vitro Permeation Studies. Lett. Drug Des. Discov. 2012, 9, 494–499. [Google Scholar] [CrossRef]
- Celia, C.; Trapasso, E.; Cosco, D.; Paolino, D.; Fresta, M. Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces 2009, 72, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, M.C.; Cosco, D.; Celia, C.; Tudose, A.; Mare, R.; Paolino, D.; Fresta, M. Anticancer activity of all- trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surfaces B Biointerfaces 2017, 150, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid Nanostructured Films for Topical Administration of Simvastatin as Coadjuvant Treatment of Melanoma. J. Pharm. Sci. 2019, 108, 3396–3407. [Google Scholar] [CrossRef]
- Chandrashekar, N.; Rani, R.S. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J. Pharm. Sci. 2008, 70, 94–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin Choy, Y.; Prausnitz, M.R. The Rule of Five for Non-Oral Routes of Drug Delivery: Ophthalmic, Inhalation and Transdermal. Pharm. Res. 2010, 28, 943–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and Transfersomes: Principles, Perspectives and Practices. Curr. Drug Deliv. 2017, 14, 613–633. [Google Scholar] [CrossRef]
- Agrahari, V.; Hiremath, P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine 2017, 12, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Mo, S.; Shao, X.; Chen, Y.; Cheng, Z. Increasing entropy for colloidal stabilization. Sci. Rep. 2016, 6, 36836. [Google Scholar] [CrossRef] [Green Version]
- Di Francesco, M.; Celia, C.; Cristiano, M.C.; D’Avanzo, N.; Ruozi, B.; Mircioiu, C.; Cosco, D.; Di Marzio, L.; Fresta, M. Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega 2021, 6, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; He, H.; Qi, J.; Lu, Y.; Zhao, W.; Dong, X.; Wu, W. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int. J. Pharm. 2018, 547, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.K.; Kesharwani, S.; Kesharwani, R.; Patel, D.K. Ethosome: A new technology used as topical & transdermal delivery system. J. Drug Deliv. Ther. 2016, 6. [Google Scholar] [CrossRef]
- Liu, X.; Meng, H. Consideration for the scale-up manufacture of nanotherapeutics—A critical step for technology transfer. VIEW 2021, 2, 20200190. [Google Scholar] [CrossRef]
- De Paola, M.; Paletta, R.; Lopresto, C.; Lio, G.; De Luca, A.; Chakraborty, S.; Calabrò, V. Stability of Film-Forming Dispersions: Affects the Morphology and Optical Properties of Polymeric Films. Polymers 2021, 13, 1464. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. The contribution of flavonoid C-ring on the DPPH free radical scavenging efficiency. A kinetic approach for the 3′,4′-hydroxy substituted members. Innov. Food Sci. Emerg. Technol. 2006, 7, 140–146. [Google Scholar] [CrossRef]
- Ioele, G.; Grande, F.; De Luca, M.; Occhiuzzi, M.A.; Garofalo, A.; Ragno, G. Photodegradation of Anti-Inflammatory Drugs: Stability Tests and Lipid Nanocarriers for Their Photoprotection. Molecules 2021, 26, 5989. [Google Scholar] [CrossRef]
- Liu, L.; Xie, H.; Chen, X.; Shi, W.; Xiao, X.; Lei, D.; Li, J. Differential response of normal human epidermal keratinocytes and HaCaT cells to hydrogen peroxide-induced oxidative stress. Clin. Exp. Dermatol. 2012, 37, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Esposito, E.; Sguizzato, M.; Lacavalla, M.; Drechsler, M.; Valacchi, G.; Zancanaro, C.; Malatesta, M. Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes for Vitamin D3 Delivery. Int. J. Mol. Sci. 2021, 22, 5341. [Google Scholar] [CrossRef] [PubMed]
- Cosco, D.; Failla, P.; Costa, N.; Pullano, S.; Fiorillo, A.; Mollace, V.; Fresta, M.; Paolino, D. Rutin-loaded chitosan microspheres: Characterization and evaluation of the anti-inflammatory activity. Carbohydr. Polym. 2016, 152, 583–591. [Google Scholar] [CrossRef] [PubMed]
Formulation 1 | EtOH (% w/v) | PL90G® (% w/v) | H2O (% w/v) | Rutin (mg/mL) |
---|---|---|---|---|
NV-A | 30 | 1 | 69 | - |
NV-A0.5 | 30 | 1 | 69 | 0.5 |
NV-A1 | 30 | 1 | 69 | 1 |
NV-A2 | 30 | 1 | 69 | 2 |
NV-A3 | 30 | 1 | 69 | 3 |
NV-A4 | 30 | 1 | 69 | 4 |
NV-B | 30 | 2 | 68 | - |
NV-B0.5 | 30 | 2 | 68 | 0.5 |
NV-B1 | 30 | 2 | 68 | 1 |
NV-B2 | 30 | 2 | 68 | 2 |
NV-B3 | 30 | 2 | 68 | 3 |
NV-B4 | 30 | 2 | 68 | 4 |
NV-C | 40 | 1 | 59 | - |
NV-C0.5 | 40 | 1 | 59 | 0.5 |
NV-C1 | 40 | 1 | 59 | 1 |
NV-C2 | 40 | 1 | 59 | 2 |
NV-C3 | 40 | 1 | 59 | 3 |
NV-C4 | 40 | 1 | 59 | 4 |
NV-D | 40 | 2 | 58 | - |
NV-D0.5 | 40 | 2 | 58 | 0.5 |
NV-D1 | 40 | 2 | 58 | 1 |
NV-D2 | 40 | 2 | 58 | 2 |
NV-D3 | 40 | 2 | 58 | 3 |
NV-D4 | 40 | 2 | 58 | 4 |
SAMPLE | Size (nm) | PdI 1 | ZP 2 (mV) | D.I. 3 |
---|---|---|---|---|
NV-A | 118 ± 1 | 0.237 ± 0.003 | −28.6 ± 1.5 | 5.4 ± 1.0 |
NV-A0.5 | 299 ± 15 | 0.104 ± 0.031 | −26.5 ± 1.3 | 5.2 ± 1.8 |
NV-A1 | 286 ± 14 | 0.363 ± 0.014 | −25.2 ± 0.2 | 4.1 ± 1.6 |
NV-A2 | 246 ± 14 | 0.303 ± 0.060 | −24.6 ± 1.7 | 3.8 ± 1.5 |
NV-A3 | 229 ± 13 | 0.351 ± 0.027 | −25 ± 1.6 | 3.7 ± 1.6 |
NV-A4 | 112 ± 2 | 0.160 ± 0.014 | −25.7 ± 1.3 | 3.5 ± 0.5 |
NV-B | 136 ± 1 | 0.135 ± 0.032 | −29.1 ± 2.2 | 7.1 ± 1.1 |
NV-B0.5 | 201 ± 1 | 0.210 ± 0.013 | −27.6 ± 2.2 | 6.5 ± 1.3 |
NV-B1 | 162 ± 2 | 0.170 ± 0.007 | −23.9 ± 1.2 | 4.6 ± 1.0 |
NV-B2 | 163 ± 1 | 0.160 ± 0.013 | 25.5 ± 2.3 | 4.5 ± 1.1 |
NV-B3 | 152 ± 1 | 0.240 ± 0.025 | −26.6 ± 1.8 | 3.6 ± 1.2 |
NV-B4 | 110 ± 8 | 0.244 ± 0.014 | −27.1 ± 0.8 | 3.2 ± 0.7 |
NV-C | 243 ± 1 | 0.181 ± 0.013 | −29.5 ± 0.4 | 6.1 ± 1.0 |
NV-C0.5 | 575 ± 6 | 0.224 ± 0.017 | −23.1 ± 0.5 | 4.8 ± 0.8 |
NV-C1 | 350.4 ± 4 | 0.182 ± 0.012 | −23.3 ± 0.9 | 4.7 ± 0.5 |
NV-C2 | 318.9 ± 7 | 0.206 ± 0.013 | −25.2 ± 0.6 | 4.4 ± 0.7 |
NV-C3 | 249.4 ± 4 | 0.164 ± 0.033 | −22.4 ± 0.2 | 4.3 ± 0.6 |
NV-C4 | 232.9 ± 18 | 0.322 ± 0.065 | −22.6 ± 1.7 | 3.8 ± 1.6 |
NV-D | 204.1 ± 2 | 0.190 ± 0.005 | −40.3± 1.6 | 10.0 ± 1.0 |
NV-D0.5 | 603 ± 10 | 0.388 ± 0.018 | −33.6 ± 1.7 | 6.7 ± 1.4 |
NV-D1 | 264.7 ± 2 | 0.235 ± 0.008 | −5.8 ± 0.05 | 6.8 ± 1.2 |
NV-D2 | 240.1 ± 2 | 0.199 ± 0.031 | −10.3 ± 0.1 | 6.7 ± 1.1 |
NV-D3 | 210.4 ± 2 | 0.189 ± 0.014 | −12.8 ± 1.5 | 4.3 ± 1.0 |
NV-D4 | 484.6 ± 16 | 0.671 ± 0.08 | −10.7 ± 1.2 | 3.7 ± 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristiano, M.C.; Barone, A.; Mancuso, A.; Torella, D.; Paolino, D. Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound. J. Funct. Biomater. 2021, 12, 74. https://doi.org/10.3390/jfb12040074
Cristiano MC, Barone A, Mancuso A, Torella D, Paolino D. Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound. Journal of Functional Biomaterials. 2021; 12(4):74. https://doi.org/10.3390/jfb12040074
Chicago/Turabian StyleCristiano, Maria Chiara, Antonella Barone, Antonia Mancuso, Daniele Torella, and Donatella Paolino. 2021. "Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound" Journal of Functional Biomaterials 12, no. 4: 74. https://doi.org/10.3390/jfb12040074