Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- David, E.A.; Marshall, M.B. Review of chest wall tumors: A diagnostic, therapeutic, and reconstructive challenge. Semin. Plast. Surg. 2011, 25, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Zarqane, H.; Viala, P.; Dallaudiere, B.; Vernhet, H.; Cyteva, C.; Larbi, A. Tumors of the rib. Diagn. Interv. Imaging 2013, 94, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfannschmidt, J.; Geisbusch, P.; Muley, T.; Hoffmann, H.; Dienemann, H. Surgical resection of secondary chest wall tumors. Thorac. Cardiovasc. Surg. 2005, 53, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Ferrigno, P.; Monaci, N.; Pangoni, A.; Comacchio, G.; Natale, G.; Faccioli, E.; Zuin, A.; Dell’Amore, A.; Rea, F. Extensive abdominal and chest wall resection and reconstruction for invasive squamous cell carcinoma of the skin. J. Thorac. Dis. 2020, 12, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.; Gladish, G. MR imaging of chest wall tumors. Magn. Reson. Imaging Clin. N. Am. 2015, 23, 197–215. [Google Scholar] [CrossRef]
- Kress, R.; Dalwadi, S.; Irani, A. R0 resection and reconstruction for a large, rapidly progressive chest wall sarcoma. J. Cardiothorac. Surg. 2018, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Mazzella, A.; Desideri, I.; Fournel, L.; Hamelin, E.; Icard, P.; Bobbio, A.; Alifano, M. Chest wall resection and reconstruction for lung cancer: Surgical techniques and example of integrated multimodality approach. J. Thorac. Dis. 2020, 12, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R. Chest wall reconstruction without prosthetic material. Thorac. Surg. Clin. 2017, 27, 165–169. [Google Scholar] [CrossRef]
- Marulli, G.; De Iaco, G.; Ferrigno, P.; De Palma, A.; Quercia, R.; Brascia, D.; Schiavon, M.; Mammana, M.; Rea, F. Sternochondral replacement: Use of cadaveric allograft for the reconstruction of ante-rior chest wall. J. Thorac. Dis. 2020, 12, 3–9. [Google Scholar] [CrossRef]
- Sandri, A.; Donati, G.; Blanc, C.; Nigra, V.; Gagliasso, M.; Barmasse, R. Anterior chest wall resection and sternal body wedge for primary chest wall tumor: Recon-struction technique with biological meshes and titanium plates. J. Thorac. Dis. 2020, 12, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Sanna, S.; Brandolini, J.; Pardolesi, A.; Argnani, D.; Mengozzi, M.; Dell’Amore, A.; Solli, P. Materials and techniques in chest wall reconstruction: A review. J. Vis. Surg. 2017, 3, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seder, C.; Rocco, G. Chest wall reconstruction after extended resection. J. Thorac. Dis. 2016, 8, S863–S871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, E.; Li, Y.; Zhao, T.; Guo, X.; He, W.; Wu, W.; Zhao, Y.; Yang, Y. Reconstruction of anterior chest wall: A clinical analysis. J. Cardiothorac. Surg. 2018, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.; Jimenez, M.; Rodriguez, M.; Varela, G. Tridimensional titanium-printed custom-made prosthesis for sternocostal re-construction. Eur. J. Cardiothorac. Surg. 2015, 48, e92–e94. [Google Scholar] [CrossRef] [Green Version]
- Dzian, A.; Zivcak, J.; Penciak, R.; Hudak, R. Implantation of a 3D-printed titanium sternum in a patient with a sternal tumor. World J. Surg. Oncol. 2018, 16, 1315–1318. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Gao, S.; Feng, J.; Li, S.; Gao, R.; Zhang, G. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J. Cardiothorac. Surg. 2018, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, J.; Li, X.; Huang, L.; Wang, L. Necessity of pleura repair in the chest wall reconstruction with three-dimensional printed tita-nium implant. J. Thorac. Dis. 2020, 12, 2713–2716. [Google Scholar] [CrossRef]
- Weyant, M.; Bains, M.; Venkatraman, E.; Downey, R.; Park, B.; Flores, R.; Rizk, N.; Rusch, V. Results of chest wall resection and reconstruction with and without rigid prosthesis. Ann. Thorac. Surg. 2006, 81, 279–285. [Google Scholar] [CrossRef]
- Bille, A.; Okiror, L.; Karenovics, W.; Routledge, T. Experience with titanium devices for rib fixation and coverage of chest wall defects. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Berthet, J.; Canaud, L.; D’Annoville, T.; Alric, P.; Marty-Ane, C. Titanium plates and Dualmesh: A modern combination for reconstructing very large chest wall defects. Ann. Thorac. Surg. 2011, 91, 1709–1716. [Google Scholar] [CrossRef]
- Ong, K.; Ong, C.; Chua, Y.; Fazuludeen, A.; Ahmed, A. The painless combination of anatomically contoured titanium plates and porcine dermal collagen patch for chest wall reconstruction. J. Thorac. Dis. 2018, 10, 2890–2897. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiong, S.; Chen, Y.; Zhao, F.; Hu, Y.; Guo, Y.; Wu, B.; Huang, P.; Yang, B. Effects of statherin on the biological properties of titanium metals subjected to different surface modification. Colloids Surf. B Biointerfaces 2020, 188, 110783. [Google Scholar] [CrossRef] [PubMed]
- Van Oirschot, B.; Meijer, G.; Bronkhorst, E.; Narhi, T.; Jansen, J.; Van den Beucken, J. Comparison of different surface modifications for titanium implants installed into the goat iliac crest. Clin. Oral Implant. Res. 2014, 27, e57–e67. [Google Scholar] [CrossRef] [PubMed]
- Muhamedov, M.; Kulbakin, D.; Gunther, V.; Choynzonov, E.; Chekalkin, T.; Hodorenko, V. Sparing surgery with the use of TiNi-based endografts in larynx cancer pa-tients. J. Surg. Oncol. 2015, 111, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Shtin, V.; Novikov, V.; Chekalkin, T.; Gunther, V.; Marchenko, E.; Choynzonov, E.; Kang, S.B.; Chang, M.J.; Kang, J.H.; Obrosov, A. Repair of orbital post-traumatic wall defects by custom-made TiNi mesh endografts. J. Funct. Biomater. 2019, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernyshova, A.; Kolomiets, L.; Chekalkin, T.; Chernov, V.; Sinilkin, I.; Gunther, V.; Marchenko, E.; Baigonakova, G.; Kang, J.H. Fertility-sparing surgery using knitted TiNi mesh implants and sentinel lymph nodes: A 10-year experience. J. Investig. Surg. 2021, 34, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Kulbakin, D.; Chekalkin, T.; Muhamedov, M.; Choynzonov, E.; Kang, J.H.; Kang, S.B.; Gunther, V. Sparing surgery for the successful treatment of thyroid papillary carcinoma invading the trachea: A case report. Case Rep. Oncol. 2016, 9, 772–780. [Google Scholar] [CrossRef]
- Gunther, V.; Radkevich, A.; Kang, S.B.; Chekalkin, T.; Marchenko, E.; Gunther, S.; Pulikov, A.; Sinuk, I.; Kaunietis, S.; Podgorniy, V.; et al. Study of the knitted TiNi mesh graft in a rabbit cranioplasty model. Biomed. Phys. Eng. Express 2019, 5, 027005. [Google Scholar] [CrossRef]
- Yasenchuk, Y.; Marchenko, E.; Gunther, V.; Radkevich, A.; Kokorev, O.; Gunther, S.; Baigonakova, G.; Hodorenko, V.; Chekalkin, T.; Kang, J.H.; et al. Biocompatibility and clinical application of porous TiNi alloys made by self-propagating high-temperature synthesis (SHS). Materials 2019, 12, 2405. [Google Scholar] [CrossRef] [Green Version]
- Yasenchuk, Y.; Marchenko, E.; Baigonakova, G.; Gunther, S.; Kokorev, O.; Gunter, V.; Chekalkin, T.; Topolnitskiy, E.; Obrosov, A.; Kang, J.H. Study on tensile, bending, fatigue, and in vivo behavior of porous SHS-TiNi alloy used as a bone substitute. Biomed. Mater. 2021, 16, 021001. [Google Scholar] [CrossRef]
- Gunther, V.; Yasenchuk, Y.; Chekalkin, T.; Marchenko, E.; Gunther, S.; Baigonakova, G.; Hodorenko, V.; Kang, J.H.; Weiss, S.; Obrosov, A. Formation of pores and amorphous-nanocrystalline phases in porous TiNi alloys made by self-propagating high-temperature synthesis (SHS). Adv. Powder Technol. 2019, 30, 673–680. [Google Scholar] [CrossRef]
- Yasenchuk, Y.; Gunther, V.; Marchenko, E.; Chekalkin, T.; Baigonakova, G.; Hodorenko, V.; Gunther, S.; Kang, J.H.; Weiss, S.; Obrosov, A. Formation of mineral phases in self-propagating high-temperature synthesis (SHS) of porous TiNi alloy. Mater. Res. Express 2019, 6, 056522. [Google Scholar] [CrossRef]
- Kokorev, O.; Hodorenko, V.; Chekalkin, T.; Gunther, V.; Kang, S.B.; Chang, M.J.; Kang, J.H. Evaluation of allogenic hepato-tissue engineered in porous TiNi-based scaffolds for liver regeneration in a CCl4-induced cirrhosis rat model. Biomed. Phys. Eng. Express 2019, 5, 025018. [Google Scholar] [CrossRef]
- Kokorev, O.; Chekalkin, T.; Marchenko, E.; Yasenchuk, Y.; Gunther, S.; Serebrov, V.; Chernyshova, A.; Obrosov, A.; Uludintceva, E.; Kang, J.H. Exploring the role of surface modifications of TiNi-based alloys in evaluating in vitro cytocompatibility: A comparative study. Surf. Topogr. Metrol. Prop. 2020, 8, 045015. [Google Scholar] [CrossRef]
- Aihara, H.; Zider, J.; Fanton, G.; Duerig, T. Combustion synthesis porous Nitinol for biomedical applications. Int. J. Biomater. 2019, 2019, 4307461. [Google Scholar] [CrossRef] [Green Version]
- Topolnitskiy, E.; Dambayev, G.; Gyunter, V. The replacement of postresectional defects of the thorax with the use of tissue im-plant of nanostructural nickelid-titan thread. Khirurgiia 2011, 10, 47–53. [Google Scholar]
- Zheravin, A.; Gyunter, V.; Anisenya, I.; Garbukov, E.; Zhamgaryan, G.; Bogoutdinova, A. Reconstruction of the chest wall using titanium-nickelid for cancer patients. Sib. J. Oncol. 2015, 3, 31–38. [Google Scholar]
- Kudrjavtsev, A.; Zheravin, A.; Anikeeva, O.; Polovnikov, E.; Yarmoshuk, S.; Drobyazgin, E. Treatment of a patient with sarcoma of sternum, ribs and invasion into peri-card and pleura. Patologiya Krovoobrashcheniya i Kardiokhirurgiya 2015, 1924, 124–129. [Google Scholar]
- Wada, T.; Kawai, A.; Ihara, K.; Sasaki, M.; Sonoda, T.; Imaeda, T.; Yamashita, T. Construct validity of the Enneking score for measuring function in patients with malignant or aggressive benign tumours of the upper limb. J. Bone Joint Surg. 2007, 89, 659–663. [Google Scholar] [CrossRef] [Green Version]
Morphological Type | No. of Patients | |
---|---|---|
Abs. | % | |
* NSCLC with invasion into the chest wall | 8 | 53.3 |
Metastasis of renal cancer | 2 | 13.3 |
Metastasis of NSCLC after radical lower lobectomy | 1 | 6.7 |
Breast cancer | 1 | 6.7 |
Plasmacytoma | 1 | 6.7 |
Fibrous dysplasia | 2 | 13.3 |
Total | 15 | 100 |
Concomitant Diseases | No. of Patients | |
---|---|---|
Abs. | % | |
Chronic obstructive pulmonary disease | 9 | 64.3 |
Chronic nonspecific lung disease | 1 | 7.1 |
Coronary artery disease | 2 | 14.3 |
Abnormal cardiac rhythm | 2 | 14.3 |
Type 2 diabetes mellitus | 2 | 14.3 |
Obesity | 2 | 14.3 |
Gastric and duodenal ulcer disease | 1 | 7.1 |
No. | Defect Localization | No. of Excised Ribs | Lung Resection | Sternum Resection | Muscle Resection | Skin Resection | Others | Defect Area, cm2 | Operative Time, Min | ICU, Day | CTD, Day | PLoS, Day | Complications |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Lat | 2 | CP | ─ | ─ | ─ | Pericardial | 84 | 180 | 3 | 2 | 15 | |
2 | Ant/Lat | 2 | LUL | ─ | PM | ─ | ─ | 50 | 150 | 1 | 4 | 14 | |
3 | Post/Lat | 2 | ─ | ─ | LD, PV | Yes | ─ | 250 | 120 | 1 | 3 | 10 | |
4 | Ant/Lat | 4 | WR | ─ | PM, Pm | ─ | ─ | 198 | 185 | 1 | 5 | 14 | |
5 | Ant | 3 | RUL | ─ | PM, Pm | ─ | ─ | 78 | 140 | 2 | 4 | 12 | |
6 | Ant | 3 | RUL | ─ | PM, Pm | Yes | ─ | 98 | 240 | 5 | 8 | 18 | pAL |
7 | Ant/Lat | 1 | ─ | ─ | Sc | ─ | ─ | 36 | 80 | ─ | 1 | 7 | |
8 | Ant/Lat | 3 | LUL | ─ | SM | ─ | ─ | 98 | 210 | 1 | 5 | 15 | |
9 | Post/Lat | 2 | RUL | ─ | PV | VB | ─ | 84 | 180 | 5 | 4 | 21 | pAF |
10 | Ant/Lat | 4 | ─ | ─ | PM | Yes | ─ | 105 | 150 | 3 | 4 | 14 | |
11 | Ant/Lat | 1 | ─ | ─ | ─ | ─ | ─ | 70 | 85 | 0 | 1 | 5 | |
12 | Ant/Lat | 3 | LUL | ─ | SM | ─ | ─ | 92 | 130 | 2 | 6 | 12 | PE, S |
13 | Ant/Lat | 3 | RUL | ─ | SM | ─ | ─ | 98 | 110 | 2 | 5 | 12 | |
14 | Ant/Lat | 2 | RUL | ─ | ─ | ─ | ─ | 78 | 145 | 3 | 3 | 14 | |
15 | Ant | 8 | ─ | Subtotal | PM | Yes | ─ | 576 | 130 | 3 | 5 | 16 | |
Mean (min–max) | ─ | 2.6 (1–8) | ─ | ─ | ─ | ─ | ─ | 133 (36–576) | 149 (80–240) | 2.1 (0–5) | 4 (1–8) | 13.3 (5–21) | ─ |
No. | Mesh Type | Reinforcing Constituent Type | Soft Tissue Flap | Paradoxic Respiration |
---|---|---|---|---|
1 | SL | PS | LT | ─ |
2 | SL | PS | Muscle | ─ |
3 | DL | PS | Muscle | ─ |
4 | DL | AR | Muscle | ─ |
5 | DL | 2 AR | LT | ─ |
6 | DL | 3 strips | Muscle | Yes |
7 | DL | ─ | Muscle | ─ |
8 | DL | AR | Muscle | ─ |
9 | DL | PS | LT | ─ |
10 | DL | 3 AR | Muscle | ─ |
11 | DL | ─ | LT | ─ |
12 | DL | 2 AR | LT | ─ |
13 | DL | 2 AR | LT | ─ |
14 | DL | 2 AR | LT | ─ |
15 | DL | 3 AR | Muscle | ─ |
Repair Option | No. of Patients | |
---|---|---|
Abs. | % | |
Mesh + local tissues | 1 | 6.7 |
Mesh + thoracodorsal flap | 1 | 6.7 |
Double-layer mesh + local tissues | 2 | 13.3 |
Double-layer mesh + pectoral flap | 2 | 13.3 |
Double-layer mesh + strip (3 pcs) + pectoral flap | 1 | 6.7 |
Double-layer mesh + rib prosthesis (1 pcs) + pectoral flap | 2 | 13.3 |
Double-layer mesh + rib prosthesis (2 pcs) + local tissues | 4 | 26.7 |
Double-layer mesh + rib prosthesis (3 pcs) + pectoral flap, external abdominal oblique muscle flap | 2 | 13.3 |
Total | 15 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topolnitskiy, E.; Chekalkin, T.; Marchenko, E.; Yasenchuk, Y.; Kang, S.-B.; Kang, J.-H.; Obrosov, A. Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors. J. Funct. Biomater. 2021, 12, 60. https://doi.org/10.3390/jfb12040060
Topolnitskiy E, Chekalkin T, Marchenko E, Yasenchuk Y, Kang S-B, Kang J-H, Obrosov A. Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors. Journal of Functional Biomaterials. 2021; 12(4):60. https://doi.org/10.3390/jfb12040060
Chicago/Turabian StyleTopolnitskiy, Evgeniy, Timofey Chekalkin, Ekaterina Marchenko, Yuri Yasenchuk, Seung-Baik Kang, Ji-Hoon Kang, and Aleksei Obrosov. 2021. "Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors" Journal of Functional Biomaterials 12, no. 4: 60. https://doi.org/10.3390/jfb12040060