Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Experimental Design and Alcohol Administration
2.3. Experimental Paradigm
2.4. MRS Data Acquisition and Processing
2.5. EEG Recording and Time–Frequency Analyses
2.6. Beamforming
2.7. Statistics
3. Results
3.1. Exclusion of Participants and Sample Characterization
3.2. Acute Intoxication
3.3. Behavioral Data
3.4. Neurophysiological Data
3.5. MRS Measures
3.6. Summary of Main Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization; Management of Substance Abuse Team. World Health Organization Global Status Report on Alcohol and Health 2018; World Health Organization, Management of Substance Abuse Team: Geneva, Switzerland, 2018; ISBN 978-92-4-156563-9. [Google Scholar]
- Crews, F.T.; Boettiger, C.A. Impulsivity, frontal lobes and risk for addiction. Pharmacol. Biochem. Behav. 2009, 93, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Stock, A.-K. Barking up the Wrong Tree: Why and How We May Need to Revise Alcohol Addiction Therapy. Front. Psychol. 2017, 8, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, D.M.; Lipari, R.N. Workplace Policies and Programs Concerning Alcohol and Drug Use. In The CBHSQ Report; Substance Abuse and Mental Health Services Administration (US): Rockville, MD, USA, 2013. [Google Scholar]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Dippel, G.; Mückschel, M.; Ziemssen, T.; Beste, C. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry—Implications for the norepinephrine system during inhibitory control. NeuroImage 2017, 157, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, W.X.; Zink, N.; Chmielewski, K.Y.; Beste, C.; Stock, A.-K. How high-dose alcohol intoxication affects the interplay of automatic and controlled processes. Addict. Biol. 2018, 25, e12700. [Google Scholar] [CrossRef]
- Stock, A.-K.; Riegler, L.; Chmielewski, W.X.; Beste, C. Paradox effects of binge drinking on response inhibition processes depending on mental workload. Arch. Toxicol. 2016, 90, 1429–1436. [Google Scholar] [CrossRef]
- Stock, A.-K.; Schulz, T.; Lenhardt, M.; Blaszkewicz, M.; Beste, C. High-dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition: Alcohol and response inhibition. Addict. Biol. 2016, 21, 136–145. [Google Scholar] [CrossRef]
- Dockree, P.M.; Bellgrove, M.A.; O’Keeffe, F.M.; Moloney, P.; Aimola, L.; Carton, S.; Robertson, I.H. Sustained attention in traumatic brain injury (tbi) and healthy controls: Enhanced sensitivity with dual-task load. Exp. Brain Res. 2006, 168, 218–229. [Google Scholar] [CrossRef]
- Dockree, P.M.; Kelly, S.P.; Roche, R.A.P.; Hogan, M.J.; Reilly, R.B.; Robertson, I.H. Behavioural and physiological impairments of sustained attention after traumatic brain injury. Cogn. Brain Res. 2004, 20, 403–414. [Google Scholar] [CrossRef]
- Helton, W.S. Impulsive responding and the sustained attention to response task. J. Clin. Exp. Neuropsychol. 2009, 31, 39–47. [Google Scholar] [CrossRef]
- Helton, W.S.; Hollander, T.D.; Warm, J.S.; Matthews, G.; Dember, W.N.; Wallaart, M.; Beauchamp, G.; Parasuraman, R.; Hancock, P.A. Signal regularity and the mindlessness model of vigilance. Br. J. Psychol. 2005, 96, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Adelhöfer, N.; Mückschel, M.; Teufert, B.; Ziemssen, T.; Beste, C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct. Funct. 2019, 224, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Beste, C.; Mückschel, M.; Rosales, R.; Domingo, A.; Lee, L.; Ng, A.; Klein, C.; Münchau, A. Striosomal dysfunction affects behavioral adaptation but not impulsivity-Evidence from X-linked dystonia-parkinsonism: Executive function in XDP. Mov. Disord. 2017, 32, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Beste, C.; Ness, V.; Falkenstein, M.; Saft, C. On the role of fronto-striatal neural synchronization processes for response inhibition—Evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 2011, 49, 3484–3493. [Google Scholar] [CrossRef] [PubMed]
- Dippel, G.; Chmielewski, W.; Mückschel, M.; Beste, C. Response mode-dependent differences in neurofunctional networks during response inhibition: An EEG-beamforming study. Brain Struct. Funct. 2016, 221, 4091–4101. [Google Scholar] [CrossRef]
- Huster, R.J.; Enriquez-Geppert, S.; Lavallee, C.F.; Falkenstein, M.; Herrmann, C.S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 2013, 87, 217–233. [Google Scholar] [CrossRef]
- Quetscher, C.; Yildiz, A.; Dharmadhikari, S.; Glaubitz, B.; Schmidt-Wilcke, T.; Dydak, U.; Beste, C. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 2015, 220, 3555–3564. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.F.; Zambrano-Vazquez, L.; Allen, J.J.B. Theta lingua franca: A common mid-frontal substrate for action monitoring processes: Omnipresent theta. Psychophysiology 2012, 49, 220–238. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.X. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 2014, 37, 480–490. [Google Scholar] [CrossRef]
- De Blasio, F.M.; Barry, R.J. Prestimulus delta and theta determinants of ERP responses in the Go/NoGo task. Int. J. Psychophysiol. 2013, 87, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, J.; Malone, S.M.; Bernat, E.M. Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin. Neurophysiol. 2014, 125, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dippel, G.; Beste, C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015, 6, 6587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, M.; Oostenveld, R.; Peeters, M.; Fries, P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci. 2006, 26, 490–501. [Google Scholar] [CrossRef]
- Hoogenboom, N.; Schoffelen, J.-M.; Oostenveld, R.; Parkes, L.M.; Fries, P. Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 2006, 29, 764–773. [Google Scholar] [CrossRef]
- Schneider, T.R.; Debener, S.; Oostenveld, R.; Engel, A.K. Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. Neuroimage 2008, 42, 1244–1254. [Google Scholar] [CrossRef]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Takei, Y.; Fujihara, K.; Tagawa, M.; Hironaga, N.; Near, J.; Kasagi, M.; Takahashi, Y.; Motegi, T.; Suzuki, Y.; Aoyama, Y.; et al. The inhibition/excitation ratio related to task-induced oscillatory modulations during a working memory task: A multtimodal-imaging study using MEG and MRS. Neuroimage 2016, 128, 302–315. [Google Scholar] [CrossRef]
- Chudasama, Y.; Robbins, T.W. Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 2006, 73, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Bolam, J.P.; Hanley, J.J.; Booth, P.A.C.; Bevan, M.D. Synaptic organisation of the basal ganglia. J. Anat. 2000, 196, 527–542. [Google Scholar] [CrossRef]
- Bar-Gad, I.; Morris, G.; Bergman, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 2003, 71, 439–473. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M.D.; Wood, R.; Gurney, K. Reconstructing the Three-Dimensional GABAergic Microcircuit of the Striatum. PLoS Comput. Biol. 2010, 6, e1001011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomkins, A.; Vasilaki, E.; Beste, C.; Gurney, K.; Humphries, M.D. Transient and steady-state selection in the striatal microcircuit. Front Comput. Neurosci. 2013, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, A.; Lau, H.; Shimada, Y.; Kondo, H.M. The effects of neurochemical balance in the anterior cingulate cortex and dorsolateral prefrontal cortex on volitional control under irrelevant distraction. Conscious. Cogn. 2018, 59, 104–111. [Google Scholar] [CrossRef]
- Wang, G.-Y.; van Eijk, J.; Demirakca, T.; Sack, M.; Krause-Utz, A.; Cackowski, S.; Schmahl, C.; Ende, G. ACC GABA levels are associated with functional activation and connectivity in the fronto-striatal network during interference inhibition in patients with borderline personality disorder. Neuroimage 2017, 147, 164–174. [Google Scholar] [CrossRef]
- Chen, G.; Cuzon Carlson, V.C.; Wang, J.; Beck, A.; Heinz, A.; Ron, D.; Lovinger, D.M.; Buck, K.J. Striatal Involvement in Human Alcoholism and Alcohol Consumption, and Withdrawal in Animal Models: STRIATAL INVOLVEMENT IN ALCOHOLISM. Alcohol. Clin. Exp. Res. 2011, 35, 1739–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Kellar, D.; Lake, A.; Finn, P.; Rebec, G.V.; Dharmadhikari, S.; Dydak, U.; Newman, S. Effects of Alcohol Cues on MRS Glutamate Levels in the Anterior Cingulate. Alcohol Alcohol. 2018, 53, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Iversen, L.L. (Ed.) Introduction to Neuropsychopharmacology; Oxford Univ. Press: Oxford, UK, 2009; ISBN 978-0-19-538053-8. [Google Scholar]
- Zorumski, C.F.; Mennerick, S.; Izumi, Y. Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014, 48, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapp, P.; Bhave, S.V.; Hoffman, P.L. How adaptation of the brain to alcohol leads to dependence: A pharmacological perspective. Alcohol Res. Health 2008, 31, 310–339. [Google Scholar]
- Crabbe, J.C.; Harris, R.A.; Koob, G.F. Preclinical studies of alcohol binge drinking: Preclinical studies of alcohol binge drinking. Ann. N. Y. Acad. Sci. 2011, 1216, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Kelm, M.K.; Criswell, H.E.; Breese, G.R. Ethanol-enhanced GABA release: A focus on G protein-coupled receptors. Brain Res. Rev. 2011, 65, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Porcu, P.; Werner, D.F.; Matthews, D.B.; Diaz-Granados, J.L.; Helfand, R.S.; Morrow, A.L. The role of GABAA receptors in the acute and chronic effects of ethanol: A decade of progress. Psychopharmacology 2009, 205, 529–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberto, M.; Siggins, G.R. Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc. Natl. Acad. Sci. USA 2006, 103, 9715–9720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.-K.; Blaszkewicz, M.; Beste, C. Effects of binge drinking on action cascading processes: An EEG study. Arch. Toxicol. 2014, 88, 475–488. [Google Scholar] [CrossRef]
- Tateno, T.; Robinson, H.P.C. The mechanism of ethanol action on midbrain dopaminergic neuron firing: A dynamic-clamp study of the role of Ih and GABAergic synaptic integration. J. Neurophysiol. 2011, 106, 1901–1922. [Google Scholar] [CrossRef] [Green Version]
- Silveri, M.M.; Cohen-Gilbert, J.; Crowley, D.J.; Rosso, I.M.; Jensen, J.E.; Sneider, J.T. Altered anterior cingulate neurochemistry in emerging adult binge drinkers with a history of alcohol-induced blackouts. Alcohol. Clin. Exp. Res. 2014, 38, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Babor, T.F.; Robaina, K. The Alcohol Use Disorders Identification Test (AUDIT): A review of graded severity algorithms and national adaptations. Int. J. Alcohol Drug Res. 2016, 5, 17. [Google Scholar] [CrossRef]
- De Bondt, T.; De Belder, F.; Vanhevel, F.; Jacquemyn, Y.; Parizel, P.M. Prefrontal GABA concentration changes in women—Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms. Brain Res. 2015, 1597, 129–138. [Google Scholar] [CrossRef]
- Stock, A.-K.; Wolff, N.; Beste, C. Opposite effects of binge drinking on consciously vs. subliminally induced cognitive conflicts. NeuroImage 2017, 162, 117–126. [Google Scholar] [CrossRef]
- Widmark, E.M.P. Die Theoretischen Grundlagen und Die Praktische Verwendbarkeit der Gerichtlich-Medizinischen Alkoholbestimmung; Urban und Schwarzenberg: Berlin, Germany, 1932. [Google Scholar]
- Watson, P.E.; Watson, I.D.; Batt, R.D. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 1980, 33, 27–39. [Google Scholar] [CrossRef]
- Friedman, R.S.; McCarthy, D.M.; Bartholow, B.D.; Hicks, J.A. Interactive effects of alcohol outcome expectancies and alcohol cues on nonconsumptive behavior. Exp. Clin. Psychopharmacol. 2007, 15, 102–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, J.P.; Curtin, J.J. Contextual Influences on Alcohol Expectancy Processes. J. Stud. Alcohol Drugs 2007, 68, 759–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.-K.; Beste, C. Binge drinking and the differential influence of ethanol on cognitive control subprocesses: A novel field of neurotoxicology. Arch. Toxicol. 2014, 88, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, I.H.; Manly, T.; Andrade, J.; Baddeley, B.T.; Yiend, J. ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 1997, 35, 747–758. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Barker, P.B.; Bhattacharyya, P.K.; Brix, M.K.; Buur, P.F.; Cecil, K.M.; Chan, K.L.; Chen, D.Y.-T.; Craven, A.R.; Cuypers, K.; et al. Big GABA: Edited MR spectroscopy at 24 research sites. Neuroimage 2017, 159, 32–45. [Google Scholar] [CrossRef]
- Brodal, P. The Central Nervous System: Structure and Function; Oxford University Press: New York, NY, USA, 2010; ISBN 978-0-19-538115-3. [Google Scholar]
- Haber, S.N. Convergence of Limbic, Cognitive, and Motor Cortico-Striatal Circuits with Dopamine Pathways in Primate Brain. In Dopamine Handbook; Iversen, L.L., Iversen, S.D., Dunnett, S.B., Björklund, A., Eds.; Oxford University Press: New York, NY, USA, 2010; pp. 38–48. ISBN 978-0-19-537303-5. [Google Scholar]
- Gerfen, C.R.; Bolam, J.P. The Neuroanatomical Organization of the Basal Ganglia. In Handbook of Basal Ganglia Structure and Function; Steiner, H., Tseng, K.-Y., Eds.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2010; pp. 3–28. [Google Scholar]
- Yildiz, A.; Quetscher, C.; Dharmadhikari, S.; Chmielewski, W.; Glaubitz, B.; Schmidt-Wilcke, T.; Edden, R.; Dydak, U.; Beste, C. Feeling safe in the plane: Neural mechanisms underlying superior action control in airplane pilot trainees—A combined EEG/MRS study. Hum. Brain Mapp. 2014, 35, 5040–5051. [Google Scholar] [CrossRef] [Green Version]
- Marjańska, M.; Lehéricy, S.; Valabrègue, R.; Popa, T.; Worbe, Y.; Russo, M.; Auerbach, E.J.; Grabli, D.; Bonnet, C.; Gallea, C.; et al. Brain dynamic neurochemical changes in dystonic patients: A magnetic resonance spectroscopy study. Mov. Disord. 2013, 28, 201–209. [Google Scholar] [CrossRef]
- Tremblay, S.; Beaulé, V.; Proulx, S.; Lafleur, L.-P.; Doyon, J.; Marjańska, M.; Théoret, H. The use of magnetic resonance spectroscopy as a tool for the measurement of bi-hemispheric transcranial electric stimulation effects on primary motor cortex metabolism. J. Vis. Exp. 2014, 93, e51631. [Google Scholar] [CrossRef]
- Provencher, S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993, 30, 672–679. [Google Scholar] [CrossRef]
- Dydak, U.; Jiang, Y.-M.; Long, L.-L.; Zhu, H.; Chen, J.; Li, W.-M.; Edden, R.A.E.; Hu, S.; Fu, X.; Long, Z.; et al. In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ. Health Perspect. 2011, 119, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, L.G.; Young, K.; Meyerhoff, D.J.; Mueller, S.G.; Matson, G.B. A detailed analysis of localized J-difference GABA editing: Theoretical and experimental study at 4 T. NMR Biomed. 2008, 21, 22–32. [Google Scholar] [CrossRef]
- Near, J.; Evans, C.J.; Puts, N.A.J.; Barker, P.B.; Edden, R.A.E. J-difference editing of gamma-aminobutyric acid (GABA): Simulated and experimental multiplet patterns. Magn. Reson. Med. 2013, 70, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Kreis, R.; Bolliger, C.S. The need for updates of spin system parameters, illustrated for the case of γ-aminobutyric acid. NMR Biomed. 2012, 25, 1401–1403. [Google Scholar] [CrossRef] [PubMed]
- Marquez de Prado, B.; Castañeda, T.R.; Galindo, A.; del Arco, A.; Segovia, G.; Reiter, R.J.; Mora, F. Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the aware rat: A microdialysis study. J. Pineal Res. 2000, 29, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunez, P.L.; Pilgreen, K.L. The spline-Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. J. Clin. Neurophysiol. 1991, 8, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Perrin, F.; Pernier, J.; Bertrand, O.; Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 184–187. [Google Scholar] [CrossRef]
- Cooper, P.S.; Darriba, Á.; Karayanidis, F.; Barceló, F. Contextually sensitive power changes across multiple frequency bands underpin cognitive control. NeuroImage 2016, 132, 499–511. [Google Scholar] [CrossRef]
- Oostenveld, R.; Stegeman, D.F.; Praamstra, P.; van Oosterom, A. Brain symmetry and topographic analysis of lateralized event-related potentials. Clin. Neurophysiol. 2003, 114, 1194–1202. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Gross, J.; Kujala, J.; Hamalainen, M.; Timmermann, L.; Schnitzler, A.; Salmelin, R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 2001, 98, 694–699. [Google Scholar] [CrossRef] [Green Version]
- Bensmann, W.; Zink, N.; Arning, L.; Beste, C.; Stock, A.-K. The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Mol. Neurobiol. 2019, 56, 8087–8100. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.C.; Collins, D.L.; Milner, B.; Milner, B. An MRI-based stereotactic atlas from 250 young normal subjects. J. Soc. Neurosci. 1992, 18, 408. [Google Scholar]
- Bensmann, W.; Zink, N.; Mückschel, M.; Beste, C.; Stock, A.-K. Neuronal networks underlying the conjoint modulation of response selection by subliminal and consciously induced cognitive conflicts. Brain Struct. Funct. 2019, 224, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, W.X.; Mückschel, M.; Dippel, G.; Beste, C. Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks. Brain Struct. Funct. 2016, 221, 3949–3961. [Google Scholar] [CrossRef]
- Mückschel, M.; Stock, A.-K.; Dippel, G.; Chmielewski, W.; Beste, C. Interacting sources of interference during sensorimotor integration processes. NeuroImage 2016, 125, 342–349. [Google Scholar] [CrossRef]
- Dharmadhikari, S.; Ma, R.; Yeh, C.-L.; Stock, A.-K.; Snyder, S.; Zauber, S.E.; Dydak, U.; Beste, C. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. Neuroimage 2015, 120, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Haag, L.; Quetscher, C.; Dharmadhikari, S.; Dydak, U.; Schmidt-Wilcke, T.; Beste, C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes. Hum. Brain Mapp. 2015, 36, 4383–4393. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn. Sci. Regul. Ed. 2004, 8, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Beaton, L.E.; Azma, S.; Marinkovic, K. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge. PLoS One 2018, 13, e0191200. [Google Scholar] [CrossRef] [Green Version]
- López-Caneda, E.; Rodríguez Holguín, S.; Correas, Á.; Carbia, C.; González-Villar, A.; Maestú, F.; Cadaveira, F. Binge drinking affects brain oscillations linked to motor inhibition and execution. J. Psychopharmacol. 2017, 31, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Mückschel, M.; Dippel, G.; Beste, C. Distinguishing stimulus and response codes in theta oscillations in prefrontal areas during inhibitory control of automated responses: Distinguishing Stimulus and Response Codes in Theta Oscillations. Hum. Brain Mapp. 2017, 38, 5681–5690. [Google Scholar] [CrossRef] [Green Version]
- Pscherer, C.; Mückschel, M.; Summerer, L.; Bluschke, A.; Beste, C. On the relevance of EEG resting theta activity for the neurophysiological dynamics underlying motor inhibitory control. Hum. Brain Mapp. 2019, 40, 4253–4265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Womelsdorf, T.; Vinck, M.; Leung, L.S.; Everling, S. Selective Theta-Synchronization of Choice-Relevant Information Subserves Goal-Directed Behavior. Front. Hum. Neurosci. 2010, 4. [Google Scholar] [CrossRef] [Green Version]
- Robbins, T.W. Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 917–932. [Google Scholar] [CrossRef] [Green Version]
- Luijten, M.; Machielsen, M.; Veltman, D.; Hester, R.; de Haan, L.; Franken, I. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people. J. Psychiatry Neurosci. 2014, 39, 149–169. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bensmann, W.; Zink, N.; Werner, A.; Beste, C.; Stock, A.-K. Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. J. Clin. Med. 2020, 9, 481. https://doi.org/10.3390/jcm9020481
Bensmann W, Zink N, Werner A, Beste C, Stock A-K. Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. Journal of Clinical Medicine. 2020; 9(2):481. https://doi.org/10.3390/jcm9020481
Chicago/Turabian StyleBensmann, Wiebke, Nicolas Zink, Annett Werner, Christian Beste, and Ann-Kathrin Stock. 2020. "Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum" Journal of Clinical Medicine 9, no. 2: 481. https://doi.org/10.3390/jcm9020481