The Role of a “Treat-to-Target” Approach in the Long-Term Renal Outcomes of Patients with Gout
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Study Design
2.3. Outcomes
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Subject Characteristics
3.2. Long-Term Renal Outcomes
3.3. Predictors of the Improvement in Renal Function
3.4. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kuo, C.F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am. J. Med. 2012, 125, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, E. Reduced glomerular function and prevalence of gout: NHANES 2009-10. PLoS ONE 2012, 7, e50046. [Google Scholar] [CrossRef] [PubMed]
- Roughley, M.J.; Belcher, J.; Mallen, C.D.; Roddy, E. Gout and risk of chronic kidney disease and nephrolithiasis: Meta-analysis of observational studies. Arthritis Res. Ther. 2015, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Roughley, M.; Sultan, A.A.; Clarson, L.; Muller, S.; Whittle, R.; Belcher, J.; Mallen, C.D.; Roddy, E. Risk of chronic kidney disease in patients with gout and the impact of urate lowering therapy: A population-based cohort study. Arthritis Res. Ther. 2018, 20, 243. [Google Scholar] [CrossRef]
- Yu, K.H.; Kuo, C.F.; Luo, S.F.; See, L.C.; Chou, I.J.; Chang, H.C.; Chiou, M.J. Risk of end-stage renal disease associated with gout: A nationwide population study. Arthritis Res. Ther. 2012, 14, R83. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Calabozo, M.; Erauskin, G.G.; Ruibal, A.; Herrero-Beites, A.M. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Care Res. 2002, 47, 610–613. [Google Scholar] [CrossRef]
- Kang, D.H.; Nakagawa, T.; Feng, L.; Watanabe, S.; Han, L.; Mazzali, M.; Truong, L.; Harris, R.; Johnson, R.J. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol. 2002, 13, 2888–2897. [Google Scholar] [CrossRef]
- Obermayr, R.P.; Temml, C.; Gutjahr, G.; Knechtelsdorfer, M.; Oberbauer, R.; Klauser-Braun, R. Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol. 2008, 19, 2407–2413. [Google Scholar] [CrossRef]
- Ejaz, A.A.; Mu, W.; Kang, D.H.; Roncal, C.; Sautin, Y.Y.; Henderson, G.; Tabah-Fisch, I.; Keller, B.; Beaver, T.M.; Nakagawa, T.; et al. Could uric acid have a role in acute renal failure? Clin. J. Am. Soc. Nephrol. 2007, 2, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dov, I.Z.; Kark, J.D. Serum uric acid is a GFR-independent long-term predictor of acute and chronic renal insufficiency: The Jerusalem Lipid Research Clinic cohort study. Nephrol. Dial. Transplant. 2011, 26, 2558–2566. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lozada, L.G.; Tapia, E.; Santamaria, J.; Avila-Casado, C.; Soto, V.; Nepomuceno, T.; Rodriguez-Iturbe, B.; Johnson, R.J.; Herrera-Acosta, J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005, 67, 237–247. [Google Scholar] [CrossRef]
- Li, L.; Yang, C.; Zhao, Y.; Zeng, X.; Liu, F.; Fu, P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Sircar, D.; Chatterjee, S.; Waikhom, R.; Golay, V.; Raychaudhury, A.; Chatterjee, S.; Pandey, R. Efficacy of Febuxostat for Slowing the GFR Decline in Patients with CKD and Asymptomatic Hyperuricemia: A 6-Month, Double-Blind, Randomized, Placebo-Controlled Trial. Am. J. Kidney Dis. 2015, 66, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, M.; Garcia de Vinuesa, S.; Verdalles, U.; Verde, E.; Macias, N.; Santos, A.; Perez de Jose, A.; Cedeno, S.; Linares, T.; Luno, J. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 2015, 65, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Siu, Y.P.; Leung, K.T.; Tong, M.K.; Kwan, T.H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am. J. Kidney Dis. 2006, 47, 51–59. [Google Scholar] [CrossRef]
- Perez-Ruiz, F. Treating to target: A strategy to cure gout. Rheumatology 2009, 48 (Suppl. 2), ii9–ii14. [Google Scholar] [CrossRef]
- Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. 2012, 64, 1431–1446. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castaneda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef]
- Qaseem, A.; Harris, R.P.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians. Management of Acute and Recurrent Gout: A Clinical Practice Guideline from the American College of Physicians. Ann. Intern. Med. 2017, 166, 58–68. [Google Scholar] [CrossRef]
- Gibson, T.; Rodgers, V.; Potter, C.; Simmonds, H.A. Allopurinol treatment and its effect on renal function in gout: A controlled study. Ann. Rheum. Dis. 1982, 41, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Whelton, A.; Macdonald, P.A.; Zhao, L.; Hunt, B.; Gunawardhana, L. Renal function in gout: Long-term treatment effects of febuxostat. J. Clin. Rheumatol. 2011, 17, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.A.; Seo, Y.I.; Song, Y.W. Four-week effects of allopurinol and febuxostat treatments on blood pressure and serum creatinine level in gouty men. J. Korean Med. Sci. 2014, 29, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wei, L.; Chen, H.; Zhang, Z.; Yu, Q.; Ji, Z.; Jiang, L. Influence of urate-lowering therapies on renal handling of uric acid. Clin. Rheumatol. 2016, 35, 133–141. [Google Scholar] [CrossRef]
- Saag, K.G.; Whelton, A.; Becker, M.A.; MacDonald, P.; Hunt, B.; Gunawardhana, L. Impact of Febuxostat on Renal Function in Gout Patients with Moderate-to-Severe Renal Impairment. Arthritis Rheumatol. 2016, 68, 2035–2043. [Google Scholar] [CrossRef]
- Vargas-Santos, A.B.; Peloquin, C.E.; Zhang, Y.; Neogi, T. Association of Chronic Kidney Disease with Allopurinol Use in Gout Treatment. JAMA Intern. Med. 2018, 178, 1526–1533. [Google Scholar] [CrossRef]
- Zhang, W.; Doherty, M.; Bardin, T.; Pascual, E.; Barskova, V.; Conaghan, P.; Gerster, J.; Jacobs, J.; Leeb, B.; Liote, F.; et al. EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 2006, 65, 1312–1324. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G.; et al. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Palevsky, P.M.; Liu, K.D.; Brophy, P.D.; Chawla, L.S.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef]
- Li-Yu, J.; Clayburne, G.; Sieck, M.; Beutler, A.; Rull, M.; Eisner, E.; Schumacher, H.R., Jr. Treatment of chronic gout. Can we determine when urate stores are depleted enough to prevent attacks of gout? J. Rheumatol. 2001, 28, 577–580. [Google Scholar]
- Shoji, A.; Yamanaka, H.; Kamatani, N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: Evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004, 51, 321–325. [Google Scholar] [CrossRef]
- Schumacher, H.R., Jr.; Becker, M.A.; Lloyd, E.; MacDonald, P.A.; Lademacher, C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology 2009, 48, 188–194. [Google Scholar] [CrossRef]
- Kuo, C.F.; Luo, S.F.; See, L.C.; Ko, Y.S.; Chen, Y.M.; Hwang, J.S.; Chou, I.J.; Chang, H.C.; Chen, H.W.; Yu, K.H. Hyperuricaemia and accelerated reduction in renal function. Scand. J. Rheumatol. 2011, 40, 116–121. [Google Scholar] [CrossRef]
- Cohen, E.; Nardi, Y.; Krause, I.; Goldberg, E.; Milo, G.; Garty, M.; Krause, I. A longitudinal assessment of the natural rate of decline in renal function with age. J. Nephrol. 2014, 27, 635–641. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, S.; Kim, K.; Choi, S.; Lee, K. Effect of Urate Lowering Therapy on Renal Disease Progression in Hyperuricemic Patients with Chronic Kidney Disease. J. Rheumatol. 2015, 42, 2143–2148. [Google Scholar] [CrossRef]
- Levy, G.; Shi, J.M.; Cheetham, T.C.; Rashid, N. Urate-Lowering Therapy in Moderate to Severe Chronic Kidney Disease. Perm. J. 2018, 22, 17–142. [Google Scholar] [CrossRef]
- Levy, G.D.; Rashid, N.; Niu, F.; Cheetham, T.C. Effect of urate-lowering therapies on renal disease progression in patients with hyperuricemia. J. Rheumatol. 2014, 41, 955–962. [Google Scholar] [CrossRef]
- Eriksen, B.O.; Ingebretsen, O.C. The progression of chronic kidney disease: A 10-year population-based study of the effects of gender and age. Kidney Int. 2006, 69, 375–382. [Google Scholar] [CrossRef]
- Fraser, S.D.; Roderick, P.J.; May, C.R.; McIntyre, N.; McIntyre, C.; Fluck, R.J.; Shardlow, A.; Taal, M.W. The burden of comorbidity in people with chronic kidney disease stage 3: A cohort study. BMC Nephrol. 2015, 16, 193. [Google Scholar] [CrossRef]
- Mohammed, E.; Browne, L.D.; Kumar, A.U.A.; Adeeb, F.; Fraser, A.D.; Stack, A.G. Prevalence and treatment of gout among patients with chronic kidney disease in the Irish health system: A national study. PLoS ONE 2019, 14, e0210487. [Google Scholar] [CrossRef]
- Jing, J.; Kielstein, J.T.; Schultheiss, U.T.; Sitter, T.; Titze, S.I.; Schaeffner, E.S.; McAdams-DeMarco, M.; Kronenberg, F.; Eckardt, K.U.; Kottgen, A.; et al. Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: The German Chronic Kidney Disease (GCKD) study. Nephrol. Dial. Transplant. 2015, 30, 613–621. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Rothenbacher, D. Prevalence of chronic kidney disease in population-based studies: Systematic review. BMC Public Health 2008, 8, 117. [Google Scholar] [CrossRef]
- Rashid, N.; Coburn, B.W.; Wu, Y.L.; Cheetham, T.C.; Curtis, J.R.; Saag, K.G.; Mikuls, T.R. Modifiable factors associated with allopurinol adherence and outcomes among patients with gout in an integrated healthcare system. J. Rheumatol. 2015, 42, 504–512. [Google Scholar] [CrossRef]
- Coburn, B.W.; Bendlin, K.A.; Sayles, H.; Meza, J.; Russell, C.L.; Mikuls, T.R. Allopurinol Medication Adherence as a Mediator of Optimal Outcomes in Gout Management. J. Clin. Rheumatol. 2017, 23, 317–323. [Google Scholar] [CrossRef]
- Corbett, E.J.M.; Pentony, P.; McGill, N.W. Achieving serum urate targets in gout: An audit in a gout-oriented rheumatology practice. Int. J. Rheum. Dis. 2017, 20, 894–897. [Google Scholar] [CrossRef]
- Yin, R.; Li, L.; Zhang, G.; Cui, Y.; Zhang, L.; Zhang, Q.; Fu, T.; Cao, H.; Li, L.; Gu, Z. Rate of adherence to urate-lowering therapy among patients with gout: A systematic review and meta-analysis. BMJ Open 2018, 8, e017542. [Google Scholar] [CrossRef]
- Scheepers, L.; Burden, A.M.; Arts, I.C.W.; Spaetgens, B.; Souverein, P.; de Vries, F.; Boonen, A. Medication adherence among gout patients initiated allopurinol: A retrospective cohort study in the Clinical Practice Research Datalink (CPRD). Rheumatology 2018, 57, 1641–1650. [Google Scholar] [CrossRef]
- Stamp, L.K.; Merriman, T.R.; Barclay, M.L.; Singh, J.A.; Roberts, R.L.; Wright, D.F.; Dalbeth, N. Impaired response or insufficient dosage? Examining the potential causes of “inadequate response” to allopurinol in the treatment of gout. Semin. Arthritis Rheum. 2014, 44, 170–174. [Google Scholar] [CrossRef]
- Stamp, L.K.; Day, R.O.; Yun, J. Allopurinol hypersensitivity: Investigating the cause and minimizing the risk. Nat. Rev. Rheumatol. 2016, 12, 235–242. [Google Scholar] [CrossRef]
- Stamp, L.K.; Chapman, P.T.; Barclay, M.L.; Horne, A.; Frampton, C.; Tan, P.; Drake, J.; Dalbeth, N. A randomised controlled trial of the efficacy and safety of allopurinol dose escalation to achieve target serum urate in people with gout. Ann. Rheum. Dis. 2017, 76, 1522–1528. [Google Scholar] [CrossRef]
- Stamp, L.K.; Taylor, W.J.; Jones, P.B.; Dockerty, J.L.; Drake, J.; Frampton, C.; Dalbeth, N. Starting dose is a risk factor for allopurinol hypersensitivity syndrome: A proposed safe starting dose of allopurinol. Arthritis Rheum. 2012, 64, 2529–2536. [Google Scholar] [CrossRef]
- Jennings, C.G.; Mackenzie, I.S.; Flynn, R.; Ford, I.; Nuki, G.; De Caterina, R.; Riches, P.L.; Ralston, S.H.; MacDonald, T.M.; FAST Study Group. Up-titration of allopurinol in patients with gout. Semin. Arthritis Rheum. 2014, 44, 25–30. [Google Scholar] [CrossRef]
- Becker, M.A.; Fitz-Patrick, D.; Choi, H.K.; Dalbeth, N.; Storgard, C.; Cravets, M.; Baumgartner, S. An open-label, 6-month study of allopurinol safety in gout: The LASSO study. Semin. Arthritis Rheum. 2015, 45, 174–183. [Google Scholar] [CrossRef]
- Kim, J.W.; Kwak, S.G.; Park, S.H. Prescription pattern of urate-lowering therapy in Korean gout patients: Data from the national health claims database. Korean J. Intern. Med. 2018, 33, 228–229. [Google Scholar] [CrossRef]
- Chou, H.W.; Chiu, H.T.; Tsai, C.W.; Ting, I.W.; Yeh, H.C.; Huang, H.C.; Kuo, C.C.; Group, C.K.R. Comparative effectiveness of allopurinol, febuxostat and benzbromarone on renal function in chronic kidney disease patients with hyperuricemia: A 13-year inception cohort study. Nephrol. Dial. Transplant. 2018, 33, 1620–1627. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Guo, Y.; Wei, F.; Yang, X.; Li, D.; Li, M.; Xu, W.; Li, W.; Sun, L.; et al. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: A systematic review and network meta-analysis. Sci. Rep. 2016, 6, 33082. [Google Scholar] [CrossRef]
Characteristics | Allopurinol (n = 42) | Febuxostat (n = 145) | Benzbromarone (n = 57) | Overall (n = 244) | p Value |
---|---|---|---|---|---|
Male sex, number (%) | 39 (92.9) | 140 (96.6) | 57 (100.0) | 236 (96.7) | 0.113 |
Age, years | 55.1 ± 15.8 | 49.5 ± 13.5 | 51.4 ± 14.5 | 50.9 ± 14.2 | 0.073 |
Age of ≥65 years, number (%) | 12 (28.6) | 19 (13.1) | 12 (21.1) | 43 (17.6) | 0.051 |
BMI *, kg/m2 | 25.6 ± 2.8 | 26.2 ± 2.9 | 26.9 ± 3.8 | 26.2 ± 3.1 | 0.202 |
Serum urate, mg/dL | 7.5 ± 1.8 | 7.9 ± 2.2 | 8.3 ± 1.7 | 7.9 ± 2.0 | 0.140 |
Serum creatinine, mg/dL | 1.13 ± 0.60 | 1.03 ± 0.23 | 1.19 ± 0.22 | 1.08 ± 0.33 | <0.001 |
eGFR, mL/min/1.73 m2 | 75.69 ± 21.20 | 81.30 ± 19.14 | 67.57 ± 15.48 | 77.12 ± 19.50 | <0.001 |
Comorbidity, number (%) | |||||
Hypertension | 20 (47.6) | 55 (37.9) | 27 (47.4) | 102 (41.8) | 0.355 |
Diabetes mellitus | 2 (4.8) | 11 (7.6) | 4 (7.0) | 17 (7.0) | 0.939 |
Ischemic heart disease | 2 (4.8) | 2 (1.4) | 0 (0) | 4 (1.6) | 0.179 |
Valvular heart disease | 1 (2.4) | 2 (1.4) | 1 (1.8) | 4 (1.6) | 0.803 |
Arrhythmia | 1 (2.4) | 2 (1.4) | 1 (1.8) | 4 (1.6) | 0.803 |
Stroke | 5 (11.9) | 6 (4.1) | 2 (3.5) | 13 (5.3) | 0.129 |
Epilepsy | 0 (0) | 1 (0.7) | 0 (0) | 1 (0.4) | 1.000 |
Concomitant medication †, number (%) | |||||
ACE inhibitors | 1 (2.7) | 0 (0) | 1 (2.0) | 2 (1.0) | 0.168 |
Angiotensin receptor blockers | 6 (16.2) | 20 (16.3) | 9 (18.4) | 35 (16.7) | 0.966 |
Beta-blockers | 4 (10.8) | 6 (4.9) | 3 (6.1) | 13 (6.2) | 0.410 |
Calcium channel blockers | 4 (10.8) | 17 (13.8) | 8 (16.3) | 29 (13.9) | 0.788 |
Diuretics | 2 (5.4) | 10 (8.1) | 6 (12.2) | 18 (8.6) | 0.545 |
Median ULT duration, months (IQR) | 27.1 (15.2, 39.9) | 22.3 (16.6, 35.1) | 32.0 (22.5, 47.2) | 25.3 (17.5, 36.9) | 0.001 |
Characteristics | Final Serum Urate ≥ 6 mg/dL (n = 53) | Final Serum Urate < 6 mg/dL (n = 191) | p Value |
---|---|---|---|
Male sex, number (%) | 52 (98.1) | 184 (96.3) | 1.000 |
Age, years | 46.3 ± 14.8 | 52.2 ± 13.9 | 0.008 |
BMI, kg/m2 | 26.7 ± 3.3 | 26.1 ± 3.0 | 0.342 |
Serum urate, mg/dL | 8.2 ± 1.9 | 7.9 ± 2.0 | 0.270 |
Serum creatinine, mg/dL | 1.12 ± 0.55 | 1.07 ± 0.23 | 0.341 |
eGFR, mL/min/1.73 m2 | 79.72 ± 21.80 | 76.40 ± 18.81 | 0.274 |
XOI users, number (%) | 40 (75.5) | 147 (77.0) | 0.855 |
Median ULT duration, months (IQR) | 22.5 (16.0, 32.8) | 26.7 (18.2, 37.9) | 0.055 |
Category | Number (%) | ΔeGFR during ULT | p Value | |
---|---|---|---|---|
Final Serum Urate ≥ 6 mg/dL | Final Serum Urate < 6 mg/dL | |||
Normal (eGFR ≥90) | 65 (26.6) | −4.46 ± 9.71 | −1.36 ± 14.12 | 0.385 |
Mild renal impairment (eGFR 60–89) | 130 (53.3) | 9.31 ± 18.89 | 5.69 ± 11.60 | 0.366 |
Moderate renal impairment (eGFR 30–59) | 47 (19.3) | −0.35 ± 3.87 | 5.33 ± 11.64 | 0.019 |
Total | 244 (100.0) | 2.68 ± 15.53 | 3.90 ± 12.53 | 0.554 |
Variables | Univariable ModelOR (95% CI) | p Value | Multivariable ModelOR (95% CI) | p Value |
---|---|---|---|---|
Age: ≥65 years | 0.64 (0.33, 1.24) | 0.182 | 0.31 (0.13, 0.75) | 0.009 |
BMI: ≥30 kg/m2 | 0.63 (0.24, 1.66) | 0.348 | ||
Hypertension | 0.97 (0.58, 1.63) | 0.905 | ||
Diabetes mellitus | 0.94 (0.35, 2.56) | 0.901 | ||
Baseline renal function (reference: normal) | ||||
eGFR: 60–89 mL/min/1.73 m2 | 2.14 (1.17, 3.94) | 0.014 | 2.39 (1.22, 4.68) | 0.012 |
eGFR: 30–59 mL/min/1.73 m2 | 1.77 (0.82, 3.79) | 0.144 | 2.44 (0.96, 6.21) | 0.060 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-J.; Song, J.S.; Choi, S.T. The Role of a “Treat-to-Target” Approach in the Long-Term Renal Outcomes of Patients with Gout. J. Clin. Med. 2019, 8, 1067. https://doi.org/10.3390/jcm8071067
Kim W-J, Song JS, Choi ST. The Role of a “Treat-to-Target” Approach in the Long-Term Renal Outcomes of Patients with Gout. Journal of Clinical Medicine. 2019; 8(7):1067. https://doi.org/10.3390/jcm8071067
Chicago/Turabian StyleKim, Woo-Joong, Jung Soo Song, and Sang Tae Choi. 2019. "The Role of a “Treat-to-Target” Approach in the Long-Term Renal Outcomes of Patients with Gout" Journal of Clinical Medicine 8, no. 7: 1067. https://doi.org/10.3390/jcm8071067
APA StyleKim, W.-J., Song, J. S., & Choi, S. T. (2019). The Role of a “Treat-to-Target” Approach in the Long-Term Renal Outcomes of Patients with Gout. Journal of Clinical Medicine, 8(7), 1067. https://doi.org/10.3390/jcm8071067