Next Article in Journal / Special Issue
Controversies over the Epithelial-to-Mesenchymal Transition in Liver Fibrosis
Previous Article in Journal / Special Issue
Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions
Article Menu

Export Article

Open AccessFeature PaperReview
J. Clin. Med. 2016, 5(1), 8; doi:10.3390/jcm5010008

MicroRNA Regulation of Epithelial to Mesenchymal Transition

Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany
Contributed equally and share first authorship.
*
Author to whom correspondence should be addressed.
Academic Editors: David A. Brenner, Tatiana Kisseleva and Jonas Fuxe
Received: 23 November 2015 / Revised: 18 December 2015 / Accepted: 5 January 2016 / Published: 14 January 2016
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition)
View Full-Text   |   Download PDF [777 KB, uploaded 14 January 2016]   |  

Abstract

Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. View Full-Text
Keywords: microRNAs; MET; cancer; EMT; transcription factor microRNAs; MET; cancer; EMT; transcription factor
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Abba, M.L.; Patil, N.; Leupold, J.H.; Allgayer, H. MicroRNA Regulation of Epithelial to Mesenchymal Transition. J. Clin. Med. 2016, 5, 8.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Clin. Med. EISSN 2077-0383 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top