Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go?
Abstract
:1. Introduction
2. IBD-Related SpA
3. Gut–Joint Axis
4. Gut Microbiome in Healthy People
5. Microbiota Alterations in IBD
6. Microbiota Alterations in SpA
7. Microbiota Alterations in IBD and SpA Compared
8. Effects of TNFi
9. Fecal Microbiota Transplantation
10. Conclusions
Funding
Conflicts of Interest
References
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.; Pantanella, F.; et al. Eubiosis and Dysbiosis: The Two Sides of the Microbiota. New Microbiol. 2016, 39, 1–12. [Google Scholar] [PubMed]
- Stecher, B.; Maier, L.; Hardt, W.-D. “Blooming” in the Gut: How Dysbiosis Might Contribute to Pathogen Evolution. Nat. Rev. Microbiol. 2013, 11, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Dheer, R.; Davies, J.M.; Quintero, M.A.; Damas, O.M.; Deshpande, A.R.; Kerman, D.H.; Sawyer, W.P.; Pignac-Kobinger, J.; Ban, Y.; Fernandez, I.; et al. Microbial Signatures and Innate Immune Gene Expression in Lamina Propria Phagocytes of Inflammatory Bowel Disease Patients. Cell Mol. Gastroenterol. Hepatol. 2020, 9, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.-F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Rudwaleit, M.; Van Der Heijde, D.; Landewé, R.; Akkoc, N.; Brandt, J.; Chou, C.T.; Dougados, M.; Huang, F.; Gu, J.; Kirazli, Y.; et al. The Assessment of SpondyloArthritis International Society Classification Criteria for Peripheral Spondyloarthritis and for Spondyloarthritis in General. Ann. Rheum. Dis. 2011, 70, 25–31. [Google Scholar] [CrossRef] [PubMed]
- M’Koma, A. Clinical Diagnosis and Phar-Maceutical Management of Inflammatory Bowel Disease. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; De Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN Revised Porto Criteria for the Diagnosis of Inflammatory Bowel Disease in Children and Adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology Consensus Guidelines on the Management of Inflammatory Bowel Disease in Adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Panaccione, R.; Steinhart, A.H.; Bressler, B.; Khanna, R.; Marshall, J.K.; Targownik, L.; Afif, W.; Bitton, A.; Borgaonkar, M.; Chauhan, U.; et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Management of Luminal Crohn’s Disease. J. Can. Assoc. Gastroenterol. 2019, 2, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Karreman, M.C.; Luime, J.J.; Hazes, J.M.W.; Weel, A.E.A.M. The Prevalence and Incidence of Axial and Peripheral Spondyloarthritis in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Crohns Colitis 2017, 11, 631–642. [Google Scholar] [CrossRef]
- Felice, C.; Dal Buono, A.; Gabbiadini, R.; Rattazzi, M.; Armuzzi, A. Cytokines in Spondyloarthritis and Inflammatory Bowel Diseases: From Pathogenesis to Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 3957. [Google Scholar] [CrossRef]
- Gracey, E.; Dumas, E.; Yerushalmi, M.; Qaiyum, Z.; Inman, R.D.; Elewaut, D. The Ties That Bind: Skin, Gut and Spondyloarthritis. Curr. Opin. Rheumatol. 2019, 31, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Pittayanon, R.; Lau, J.T.; Leontiadis, G.I.; Tse, F.; Yuan, Y.; Surette, M.; Moayyedi, P. Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 2020, 158, 930–946.e1. [Google Scholar] [CrossRef] [PubMed]
- Manasson, J.; Blank, R.B.; Scher, J.U. The Microbiome in Rheumatology: Where Are We and Where Should We Go? Ann. Rheum. Dis. 2020, 79, 727–733. [Google Scholar] [CrossRef]
- Wen, C.; Zheng, Z.; Shao, T.; Liu, L.; Xie, Z.; Le Chatelier, E.; He, Z.; Zhong, W.; Fan, Y.; Zhang, L.; et al. Quantitative Metagenomics Reveals Unique Gut Microbiome Biomarkers in Ankylosing Spondylitis. Genome Biol. 2017, 18, 1–13. [Google Scholar] [CrossRef]
- Costello, M.E.; Ciccia, F.; Willner, D.; Warrington, N.; Robinson, P.C.; Gardiner, B.; Marshall, M.; Kenna, T.J.; Triolo, G.; Brown, M.A. Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis. Arthritis Rheumatol. 2015, 67, 686–691. [Google Scholar] [CrossRef]
- Klingberg, E.; Magnusson, M.K.; Strid, H.; Deminger, A.; Ståhl, A.; Sundin, J.; Simrén, M.; Carlsten, H.; Öhman, L.; Forsblad-D’Elia, H. A Distinct Gut Microbiota Composition in Patients with Ankylosing Spondylitis Is Associated with Increased Levels of Fecal Calprotectin. Arthritis Res. Ther. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- Yin, J.; Sternes, P.R.; Wang, M.; Song, J.; Morrison, M.; Li, T.; Zhou, L.; Wu, X.; He, F.; Zhu, J.; et al. Shotgun Metagenomics Reveals an Enrichment of Potentially Cross-Reactive Bacterial Epitopes in Ankylosing Spondylitis Patients, as Well as the Effects of TNFi Therapy upon Microbiome Composition. Ann. Rheum. Dis. 2020, 79, 132–140. [Google Scholar] [CrossRef]
- Sternes, P.R.; Brett, L.; Phipps, J.; Ciccia, F.; Kenna, T.; de Guzman, E.; Zimmermann, K.; Morrison, M.; Holtmann, G.; Klingberg, E.; et al. Distinctive Gut Microbiomes of Ankylosing Spondylitis and Inflammatory Bowel Disease Patients Suggest Differing Roles in Pathogenesis and Correlate with Disease Activity. Arthritis Res. Ther. 2022, 24, 163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, R.; Zhang, X.; Fang, G.; Chen, J.; Li, J.; Xu, S.; Qian, L.; Chen, W.; Pan, F. Fecal Microbiota in Patients with Ankylosing Spondylitis: Correlation with Dietary Factors and Disease Activity. Clin. Chim. Acta 2019, 497, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sagard, J.; Olofsson, T.; Mogard, E.; Marsal, J.; Andréasson, K.; Geijer, M.; Kristensen, L.E.; Lindqvist, E.; Wallman, J.K. Gut Dysbiosis Associated with Worse Disease Activity and Physical Function in Axial Spondyloarthritis. Arthritis Res. Ther. 2022, 24, 42. [Google Scholar] [CrossRef] [PubMed]
- Tito, R.Y.; Cypers, H.; Joossens, M.; Varkas, G.; Van Praet, L.; Glorieus, E.; Van den Bosch, F.; De Vos, M.; Raes, J.; Elewaut, D. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol. 2017, 69, 114–121. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Tam, L.-S. Gut Microbiome and Its Interaction with Immune System in Spondyloarthritis. Microorganisms 2020, 8, 1727. [Google Scholar] [CrossRef] [PubMed]
- Van Praet, L.; Van den Bosch, F.E.; Jacques, P.; Carron, P.; Jans, L.; Colman, R.; Glorieus, E.; Peeters, H.; Mielants, H.; De Vos, M.; et al. Microscopic Gut Inflammation in Axial Spondyloarthritis: A Multiparametric Predictive Model. Ann. Rheum. Dis. 2013, 72, 414–417. [Google Scholar] [CrossRef] [PubMed]
- De Vos, M.; Mielants, H.; Cuvelier, C.; Elewaut, A.; Veys, E. Long-Term Evolution of Gut Inflammation in Patients with Spondyloarthropathy. Gastroenterology 1996, 110, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Leirisalo-Repo, M. Prognosis, Course of Disease, and Treatment of the Spondyloarthropathies. Rheum. Dis. Clin. N. Am. 1998, 24, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Bywaters, E.G.L. Clinical Features and Course of Ankylosing Spondylitis: As Seen in a Follow-up of 222 Hospital Referred Cases. Ann. Rheum. Dis. 1958, 17, 209–228. [Google Scholar] [CrossRef]
- Gheita, T.A.; El Gazzar, I.I.; El-Fishawy, H.S.; Aboul-Ezz, M.A.; Kenawy, S.A. Involvement of IL-23 in Enteropathic Arthritis Patients with Inflammatory Bowel Disease: Preliminary Results. Clin. Rheumatol. 2014, 33, 713–717. [Google Scholar] [CrossRef]
- Poggi, A.; Zocchi, M.R. NK Cell Autoreactivity and Autoimmune Diseases. Front. Immunol. 2014, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D. Genetics of Spondyloarthritis—Beyond the MHC. Nat. Rev. Rheumatol. 2012, 8, 296–304. [Google Scholar] [CrossRef]
- Sharip, A.; Kunz, J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chatzikyriakidou, A.; Voulgari, P.V.; Drosos, A.A. What Is the Role of HLA-B27 in Spondyloarthropathies? Autoimmun. Rev. 2011, 10, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Schittenhelm, R.B.; Sian, T.C.C.L.K.; Wilmann, P.G.; Dudek, N.L.; Purcell, A.W. Revisiting the Arthritogenic Peptide Theory: Quantitative Not Qualitative Changes in the Peptide Repertoire of HLA-B27 Allotypes. Arthritis Rheumatol. 2015, 67, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Cauli, A.; Dessole, G.; Nurchis, P.P.; Vacca, A.; Mameli, A.; Garau, P.; Pala, R.; Passiu, G.; Mathieu, A. The Role of HLA-B27 Molecules in the Pathogenesis of Ankylosing Spondylitis. Reumatismo 2002, 54, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Gorfu, G.; Rivera-Nieves, J.; Ley, K. Role of Beta7 Integrins in Intestinal Lymphocyte Homing and Retention. Curr. Mol. Med. 2009, 9, 836–850. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M.; Andrew, D.P.; Butcher, E.C.; Jalkanen, S. Dual Binding Capacity of Mucosal Immunoblasts to Mucosal and Synovial Endothelium in Humans: Dissection of the Molecular Mechanisms. J. Exp. Med. 1995, 181, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.; Elewaut, D. Joint Expedition: Linking Gut Inflammation to Arthritis. Mucosal Immunol. 2008, 1, 364–371. [Google Scholar] [CrossRef] [PubMed]
- May, E.; Märker-Hermann, E.; Wittig, B.M.; Zeitz, M.; Meyer zum Büschenfelde, K.H.; Duchmann, R. Identical T-Cell Expansions in the Colon Mucosa and the Synovium of a Patient with Enterogenic Spondyloarthropathy. Gastroenterology 2000, 119, 1745–1755. [Google Scholar] [CrossRef]
- Speca, S.; Dubuquoy, L. Chronic Bowel Inflammation and Inflammatory Joint Disease: Pathophysiology. Jt. Bone Spine 2017, 84, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Qaiyum, Z.; Lim, M.; Inman, R.D. The Gut-Joint Axis in Spondyloarthritis: Immunological, Microbial, and Clinical Insights. Semin. Immunopathol. 2021, 43, 173–192. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Maintenance of Intestinal Homeostasis by Mucosal Barriers. Inflamm. Regen. 2018, 38, 5. [Google Scholar] [CrossRef] [PubMed]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L. V The Antibacterial Lectin RegIIIgamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef]
- Subramani, D.B.; Johansson, M.E.V.; Dahlén, G.; Hansson, G.C. Lactobacillus and Bifidobacterium Species Do Not Secrete Protease That Cleaves the MUC2 Mucin Which Organises the Colon Mucus. Benef. Microbes 2010, 1, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Larsson, J.M.H.; Hansson, G.C. The Two Mucus Layers of Colon Are Organized by the MUC2 Mucin, Whereas the Outer Layer Is a Legislator of Host–Microbial Interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 4659–4665. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064–15069. [Google Scholar] [CrossRef]
- Zeisel, M.B.; Dhawan, P.; Baumert, T.F. Tight Junction Proteins in Gastrointestinal and Liver Disease. Gut 2019, 68, 547–561. [Google Scholar] [CrossRef]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef]
- Fasano, A. All Disease Begins in the (Leaky) Gut: Role of Zonulin-Mediated Gut Permeability in the Pathogenesis of Some Chronic Inflammatory Diseases. F1000Research 2020, 9, 69. [Google Scholar] [CrossRef]
- Fraher, M.H.; O’Toole, P.W.; Quigley, E.M.M. Techniques Used to Characterize the Gut Microbiota: A Guide for the Clinician. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.; Haynes, M.; Hanson, N.; Angly, F.E.; Heath, A.C.; Rohwer, F.; Gordon, J.I. Viruses in the Faecal Microbiota of Monozygotic Twins and Their Mothers. Nature 2010, 466, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Intestinal Mucosal Barrier Function in Health and Disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Fukui, H.; Xu, X.; Wang, X.; Ebisutani, N.; Tanaka, Y.; Maeda, A.; Makizaki, Y.; Ohno, H.; Kondo, T.; et al. Alteration of Colonic Mucosal Permeability during Antibiotic-Induced Dysbiosis. Int. J. Mol. Sci. 2020, 21, 6108. [Google Scholar] [CrossRef]
- Sartor, R.B. Therapeutic Manipulation of the Enteric Microflora in Inflammatory Bowel Diseases: Antibiotics, Probiotics, and Prebiotics. Gastroenterology 2004, 126, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Lucas López, R.; Grande Burgos, M.J.; Gálvez, A.; Pérez Pulido, R. The Human Gastrointestinal Tract and Oral Microbiota in Inflammatory Bowel Disease: A State of the Science Review. APMIS 2017, 125, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Gophna, U.; Sommerfeld, K.; Gophna, S.; Doolittle, W.F.; Veldhuyzen van Zanten, S.J.O. Differences between Tissue-Associated Intestinal Microfloras of Patients with Crohn’s Disease and Ulcerative Colitis. J. Clin. Microbiol. 2006, 44, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Joossens, M.; Huys, G.; Cnockaert, M.; De Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the Faecal Microbiota in Patients with Crohn’s Disease and Their Unaffected Relatives. Gut 2011, 60, 631–637. [Google Scholar] [CrossRef]
- Yu, S.; Balasubramanian, I.; Laubitz, D.; Tong, K.; Bandyopadhyay, S.; Lin, X.; Flores, J.; Singh, R.; Liu, Y.; Macazana, C.; et al. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity 2020, 53, 398–416.e8. [Google Scholar] [CrossRef]
- Chassaing, B.; Darfeuille–Michaud, A. The Commensal Microbiota and Enteropathogens in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology 2011, 140, 1720–1728.e3. [Google Scholar] [CrossRef]
- Strauss, J.; Kaplan, G.G.; Beck, P.L.; Rioux, K.; Panaccione, R.; Devinney, R.; Lynch, T.; Allen-Vercoe, E. Invasive Potential of Gut Mucosa-Derived Fusobacterium Nucleatum Positively Correlates with IBD Status of the Host. Inflamm. Bowel Dis. 2011, 17, 1971–1978. [Google Scholar] [CrossRef]
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment. Genome Biol. 2012, 13, R79. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A Decrease of the Butyrate-Producing Species Roseburia Hominis and Faecalibacterium Prausnitzii Defines Dysbiosis in Patients with Ulcerative Colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Host–Microbiota Interactions in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 76–77. [Google Scholar] [CrossRef]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, M.; Dogan, B.; Rishniw, M.; Weitzman, G.; Bosworth, B.; Yantiss, R.; Orsi, R.H.; Wiedmann, M.; McDonough, P.; Kim, S.G.; et al. Culture Independent Analysis of Ileal Mucosa Reveals a Selective Increase in Invasive Escherichia Coli of Novel Phylogeny Relative to Depletion of Clostridiales in Crohn’s Disease Involving the Ileum. ISME J. 2007, 1, 403–418. [Google Scholar] [CrossRef]
- Schirmer, M.; Garner, A.; Vlamakis, H.; Xavier, R.J. Microbial Genes and Pathways in Inflammatory Bowel Disease. Nat. Rev. Microbiol. 2019, 17, 497–511. [Google Scholar] [CrossRef]
- Sokol, H.; né dicte Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermú dez-Humará, L.G.; Gratadoux, J.-J.; bastien Blugeon, S.; Bridonneau, C.; Furet, J.-P.; rard Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. Microbiome Survey of the Inflamed and Noninflamed Gut at Different Compartments within the Gastrointestinal Tract of Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2016, 22, 817–825. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-Omics of the Gut Microbial Ecosystem in Inflammatory Bowel Diseases. Nature 2019, 569, 655–662. [Google Scholar] [CrossRef]
- Vich Vila, A.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut Microbiota Composition and Functional Changes in Inflammatory Bowel Disease and Irritable Bowel Syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef]
- Forbes, J.D.; Chen, C.Y.; Knox, N.C.; Marrie, R.A.; El-Gabalawy, H.; De Kievit, T.; Alfa, M.; Bernstein, C.N.; Van Domselaar, G. A Comparative Study of the Gut Microbiota in Immune-Mediated Inflammatory Diseases-Does a Common Dysbiosis Exist? Microbiome 2018, 6, 1–15. [Google Scholar] [CrossRef]
- Ott, S.J.; Musfeldt, M.; Wenderoth, D.F.; Hampe, J.; Brant, O.; Fölsch, U.R.; Timmis, K.N.; Schreiber, S. Reduction in Diversity of the Colonic Mucosa Associated Bacterial Microflora in Patients with Active Inflammatory Bowel Disease. Gut 2004, 53, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chang, E.B. Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology 2021, 160, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Lepage, P.; Colombet, J.; Marteau, P.; Sime-Ngando, T.; Doré, J.; Leclerc, M. Dysbiosis in Inflammatory Bowel Disease: A Role for Bacteriophages? Gut 2008, 57, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.M.; Handley, S.A.; Baldridge, M.T.; Droit, L.; Liu, C.Y.; Keller, B.C.; Kambal, A.; Monaco, C.L.; Zhao, G.; Fleshner, P.; et al. Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 2015, 160, 447–460. [Google Scholar] [CrossRef]
- Wang, W.; Jovel, J.; Halloran, B.; Wine, E.; Patterson, J.; Ford, G.; O’Keefe, S.; Meng, B.; Song, D.; Zhang, Y.; et al. Metagenomic Analysis of Microbiome in Colon Tissue from Subjects with Inflammatory Bowel Diseases Reveals Interplay of Viruses and Bacteria. Inflamm. Bowel Dis. 2015, 21, 1419–1427. [Google Scholar] [CrossRef]
- Zuo, T.; Lu, X.J.; Zhang, Y.; Cheung, C.P.; Lam, S.; Zhang, F.; Tang, W.; Ching, J.Y.L.; Zhao, R.; Chan, P.K.S.; et al. Gut Mucosal Virome Alterations in Ulcerative Colitis. Gut 2019, 68, 1169–1179. [Google Scholar] [CrossRef]
- Cadwell, K. The Virome in Host Health and Disease. Immunity 2015, 42, 805–813. [Google Scholar] [CrossRef]
- Limon, J.J.; Tang, J.; Li, D.; Wolf, A.J.; Michelsen, K.S.; Funari, V.; Gargus, M.; Nguyen, C.; Sharma, P.; Maymi, V.I.; et al. Malassezia Is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019, 25, 377–388.e6. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal Microbiota Dysbiosis in IBD. Gut 2017, 66, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhan, H.; Xu, W.; Yan, S.; Ng, S.C. The Role of Gut Mycobiome in Health and Diseases. Therap. Adv. Gastroenterol. 2021, 14, 175628482110471. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.L.; Limon, J.J.; Bar, A.S.; Leal, C.A.; Gargus, M.; Tang, J.; Brown, J.; Funari, V.A.; Wang, H.L.; Crother, T.R.; et al. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe 2016, 19, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Zhangni, L.; Mofan, X.; Yuling, C.; Yingchao, L. Clinical Features and Fecal Microbiota Characteristics of Patients with Both Ulcerative Colitis and Axial Spondyloarthritis. BMC Gastroenterol. 2024, 24, 56. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Ortiz, R.A.; Leon, M.; Abril, D.; Escobar-Perez, J.; Florez-Sarmiento, C.; Parra-Izquierdo, V.; Chalem, P.; Romero-Sanchez, C. Colonoscopy Aspiration Lavages for Mucosal Metataxonomic Profiling of Spondylarthritis-Associated Gastrointestinal Tract Alterations. Sci. Rep. 2023, 13, 7015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, H.; Xiao, X.; Chen, B.; Guo, R.; Wang, Q.; Chen, H.; Zhao, L.; Zhang, C.; Jiao, Y.; et al. Metagenomic Profiling of the Pro-Inflammatory Gut Microbiota in Ankylosing Spondylitis. J. Autoimmun. 2020, 107, 102360. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Bach, M.; Asquith, M.; Lee, A.Y.; Akileswaran, L.; Stauffer, P.; Davin, S.; Pan, Y.; Cambronne, E.D.; Dorris, M.; et al. HLA-B27 and Human Β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats. PLoS ONE 2014, 9, e105684. [Google Scholar] [CrossRef] [PubMed]
- Scher, J.U.; Ubeda, C.; Artacho, A.; Attur, M.; Isaac, S.; Reddy, S.M.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; et al. Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients with Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease. Arthritis Rheumatol. 2015, 67, 128–139. [Google Scholar] [CrossRef]
- Ward, M.M.; Deodhar, A.; Gensler, L.S.; Dubreuil, M.; Yu, D.; Khan, M.A.; Haroon, N.; Borenstein, D.; Wang, R.; Biehl, A.; et al. 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis Care Res. 2019, 71, 1285–1299. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Cuomo, C.; Mignini, I.; Gasbarrini, A.; Papa, A. Focus on Anti-Tumour Necrosis Factor (TNF)-α-Related Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 8187. [Google Scholar] [CrossRef] [PubMed]
- Suenaert, P.; Bulteel, V.; Lemmens, L.; Noman, M.; Geypens, B.; Van Assche, G.; Geboes, K.; Ceuppens, J.L.; Rutgeerts, P. Anti-Tumor Necrosis Factor Treatment Restores the Gut Barrier in Crohn’s Disease. Am. J. Gastroenterol. 2002, 97, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Xia, X.; He, C.; Huang, Y.; Chen, Y.; Wu, Y.; Chen, Y.; Hou, Q.; Shu, Y.; Zhang, W.; et al. Association of Anti-TNF-α Treatment with Gut Microbiota of Patients with Ankylosing Spondylitis. Pharmacogenet. Genom. 2022, 32, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ditto, M.C.; Parisi, S.; Landolfi, G.; Borrelli, R.; Realmuto, C.; Finucci, A.; Caviglia, G.P.; Ribaldone, D.G.; Astegiano, M.; Zanetti, A.; et al. Intestinal Microbiota Changes Induced by TNF-Inhibitors in IBD-Related Spondyloarthritis. RMD Open 2021, 7, e001755. [Google Scholar] [CrossRef] [PubMed]
- Bazin, T.; Hooks, K.B.; Barnetche, T.; Truchetet, M.E.; Enaud, R.; Richez, C.; Dougados, M.; Hubert, C.; Barré, A.; Nikolski, M.; et al. Microbiota Composition May Predict Anti-TNF Alpha Response in Spondyloarthritis Patients: An Exploratory Study. Sci. Rep. 2018, 8, 5446. [Google Scholar] [CrossRef] [PubMed]
- Vallier, M.; Segurens, B.; Larsonneur, E.; Meyer, V.; Ferreira, S.; Caloustian, C.; Deleuze, J.F.; Dougados, M.; Chamaillard, M.; Miceli-Richard, C. Characterisation of Gut Microbiota Composition in Patients with Axial Spondyloarthritis and Its Modulation by TNF Inhibitor Treatment. RMD Open 2023, 9, e002794. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Anderco, P.; Birsan, S. Fecal Microbiota Transplantation in Inflammatory Bowel Disease. Biomedicines 2023, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Allen-Vercoe, E.; Petrof, E.O. Fecal Microbiota Transplantation: In Perspective. Therap. Adv. Gastroenterol. 2016, 9, 229–239. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Pan, F.; Song, C.; Peng, L.; Yang, Y.; Huang, F. Case Report: Fecal Microbiota Transplantation in Refractory Ankylosing Spondylitis. Front. Immunol. 2023, 14, 1093233. [Google Scholar] [CrossRef]
IBD | SpA | IBD-Related SpA | |||
---|---|---|---|---|---|
CD | UC | AS | PsA | ||
Increase | |||||
Proteobacteria (F)(T) [57,58,63] | Proteobacteria (F)(T) [57,63] | Actinobacteria (F) [22] | Actinobacteria (F) [22] | Proteobacteria (F) [85] | |
Bacteroidetes (F)(T) [57,58,63] | Bacteroidetes (F)(T) [57,63] | ||||
Gammaproteobacteria (F) [66] * | |||||
Deltaproteobacteria (F) [66] * | |||||
Enterobacteriaceae (T)(F) [21,66] * | Enterobacteriaceae (T)(F) [19,21] | Enterobacteriaceae (F)(CAL) [21,86] # | Enterobacteriaceae (F)(CAL) [21] | ||
Fusobacteriaceae (T) [62] | Fusobacteriaceae (T) [62] | Bacteroidaceae (T) [18] | Bacteroidaceae (T) [18] | ||
Veillonellaceae (T) [66] * | Lachnospiraceae (T) [18] | Lachnospiraceae (T) [18] | |||
Neisseriaceae (T) [66] * | Porphyromonadaceae (T) [18] | Porphyromonadaceae (T) [18] | |||
Pasteurellaceae (T) [66] * | Rikenellaceae (T) [18] | Rikenellaceae (T) [18] | |||
Ruminococcaceae (T) [18] | Ruminococcaceae (T) [18] | ||||
Streptococcus (F)(T) [21,66] * | Streptococcus (F)(T) [21] | Streptococcus (F)(T) [19,21] | Streptococcus (F)(T) [19,21] | Escherichia (F) [85] | |
Haeomophilus (F)(T) [66] * | Haeomophilus (F)(T) [21] | Haeomophilus (F)(T) [21] | Shighella (F) [85] | ||
Enterococcus (F) [66] * | Blautia (F) [22] | Blautia (F) [22] | |||
Campylobacter (F) [66] * | Dorea (F) [22] | Dorea (F) [22] | |||
Lactobacillus (F) [66] * | Bifidobacterium (T) [17] | Bifidobacterium (T) [17] | |||
Megasphaera (F) [66] * | Megamonas (F) [22] | Megamonas (F) [22] | |||
Sutterella (F) [22] | Sutterella (F) [22] | ||||
Ruminococcus Torques (T) [59,61] | Ruminococcus Torques (T) [61] | Prevotella melaninogenica (T) [17] | Prevotella melaninogenica (T) [17] | ||
Bacteroides fragilis (F) [66] * | Prevotella copri (T)(F) [17,87] | Prevotella copri (T)(F) [17,87] | |||
Proteus mirabilis (F) [66] * | Prevotella sp. C561 (T) [17] | Prevotella sp. C561 (T) [17] | |||
Klebsiella pneumoniae (F) [66] * | Prevotella stercorea (CAL) [86] | ||||
Ruminococcus Gnavus (T) [59,60,61] | Ruminococcus Gnavus (T) [60,61] | Bacteroides coprophilus (F) [87] | Bacteroides coprophilus (F) [87] | ||
Bacteroides Vulgatus (A) [88] | Bacteroides Vulgatus (A) [88] | Bacteroides Vulgatus (A) [88] | |||
Dialister Invisus (T) [24] | Dialister Invisus (T) [24] | Dialister Invisus (T) [24] | |||
Actinomyces spp. (F) [73] | Actinomyces spp. (F) [73] | Bacteroides Plebeius (F) [22] | Bacteroides Plebeius (F) [22] | ||
Intestinibacter spp. (F) [73] | Intestinibacter spp. (F) [73] | Parabacteroides Distasonis (F) [87] | Parabacteroides Distasonis (F) [87] | ||
Escherichia coli (F) [67] | Eubacterium Siraeum (F) [87] | Eubacterium Siraeum (F) [87] | |||
Acidaminococcus Fermentans (F) [87] | Acidaminococcus Fermentans (F) [87] | ||||
Clostridium Boltae (F) [20] # | Clostridium Boltae (F) [20] # | ||||
Clostridium Hathewayi (F) [20] # | Clostridium Hathewayi (F) [20] # | ||||
Clostridiales b. 1 7 47FAA (F) [20] # | Clostridiales b. 1 7 47FAA (F) [20] # | ||||
Succinivibrio spp. (CAL) [86] # | |||||
Pneumoviridae (T) [79] | |||||
Herpesviridae (T) [78] | Herpesviridae (T) [78] | ||||
Caudovirales bacteriophages (F) [77] | Caudovirales bacteriophages (F) [77] | ||||
Norovirus (A) [80] | Norovirus (A) [80] | ||||
Epinococcus spp. (F) [84] | Epinococcus spp. (F) [84] | ||||
Wallemia (F) [84] | Wallemia (F) [84] | ||||
Aspergillus (F) [84] | Aspergillus (F) [84] | ||||
Candida Albicans (F) [82,83] | Candida Albicans (F) [82,83] | ||||
Malassezia Restricta (T)(A) [81] | Malassezia Restricta (T)(A) [81] | ||||
Decrease | |||||
Firmicutes (T)(F) [57,58,63] | Firmicutes (T)(F) [57,63] | Firmicutes (F) [85] | |||
Erysipelotrichales (T) [66] * | |||||
Bacteroidales (T) [66] * | |||||
Clostridiales (T) [66,67] * | |||||
Ruminococcaceae (T)(F) [63] | Ruminococcaceae (T)(F) [63] | Ruminococcaceae (F) [18] | Ruminococcaceae (F) [18] | Ruminococcaceae (F) [85] | |
Lachnospiraceae (T) [63,65] | Lachnospiraceae (T) [63,65] | Veillonellaceae (T) [18] | Veillonellaceae (T) [18] | ||
Fusobacteriacea (F) [66] * | Prevotellaceae (T) [18] | Prevotellaceae (T) [18] | |||
Neisseriaceae (F) [66] * | |||||
Clostridium (F) [19] | Clostridium (F) [19] | Clostridium (F) [19] | |||
Ruminococcus (T) [63] | Ruminococcus (T) [63] | Ruminococcus (F) [22,89] | Ruminococcus (F) [22] | Ruminococcus (F) [89] | |
Akkermansia (T) [89] | Akkermansia (T) [89] | Akkermansia (F) [89] | Akkermansia (F) [89] | ||
Faecalibacterium (T)(F) [63,65,68,69] | Faecalibacterium (T)(F) [63,65,68] | Faecalibacterium (F) [22] | Faecalibacterium (F) [22] | Faecalibacterium (F) [85] | |
Roseburia (T) [63,64,65] | Roseburia (T) [63,64,65] | Lachnospira (F) [22] | Lachnospira (F) [22] | ||
Eubacterium (T) [66] * | |||||
Dorea (T)(F) [66] * | |||||
Blautia (T) [66] * | |||||
Collinsella (T) [63,65] | Collinsella (T) [63,65] | ||||
Coprococcus (T) [66] * | |||||
Phascolarctobacterium (T) [63] | Phascolarctobacterium (T) [63] | ||||
Faecalibacterium Prausnitzii (T) [63,66,69] * | Faecalibacterium Prausnitzii (T) [19,63,64] | Faecalibacterium Prausnitzii (F) [19,87] | Faecalibacterium Prausnitzii (F) [19,87] | ||
Bifidobacterium Adolescentis (F) [64] | Bifidobacterium Adolescentis (F) [20] # | Bifidobacterium Adolescentis (F) [20] # | |||
Coprococcus Comes (F) [66] * | Ruminococcus Obeum (F) [87] | Ruminococcus Obeum (F) [87] | |||
Bifidobacterium Longum (F) [72] | Bifidobacterium Longum (F) [72] | Eubacterium Hallii (F) [87] | Eubacterium Hallii (F) [87] | ||
Eubacterium biforme (F)(CAL) [86] # | |||||
Coprococcus Catus (F)(CAL) [20,86,87] # | Coprococcus Catus (F)(CAL) [20,87] | ||||
Coprococcus Eutactus (F) [87] | Coprococcus Eutactus (F) [87] | ||||
Lachnospiraceae b. 5 1 63FAA (F) [20] # | |||||
Roseburia Inulinivorans (F) [20] # | Roseburia Inulinivorans (F) [20] # | ||||
Prevotella copri (F) [20] # | Prevotella copri (F) [20] # | ||||
Dialister Invisus (F) [20] # | Dialister Invisus (F) [20] # | ||||
Clostridium IV (F) [22] | Clostridium IV (F) [22] | ||||
Clostridium XlVb (F) [22] | Clostridium XlVb (F) [22] | ||||
Saccharomyces cerevisae (F) [82,83] | Saccharomyces cerevisae (F) [82,83] | ||||
Candida tropicalis (F) [84] | Candida tropicalis (F) [84] | ||||
Anelloviridae (T) [79] | Anelloviridae (T) [79] |
Work | Objective | Population | Result |
---|---|---|---|
Yin et al. [20] | Impact of TNFi on gut microbiota in AS. | 67 AS treated with TNFi. 60 AS not treated with TNFi. 123 healthy controls. | Change in the microbiota after TNFi therapy Increase: Bilophila, P. Copri, F. Prausnitzii, K. Pneumoniae, R. Bromii, Eubacterium Biforme. |
Dai et al. [93] | Impact of TNFi on gut microbiota in AS. | 11 healthy controls. 24 AS before and after treatment with TNFi. | Change in the microbiota after TNFi therapy Increase: Megamonas and Lachnoclostridium (SCFA-producing bacteria) |
Ditto et al. [94] | Impact of TNFi on gut microbiota in IBD-related SpA. | 20 IBD-related SpA treated with TNFi. | Change in the microbiota after TNFi therapy Increase: Lachnospiraceae, Clostridia, Lactobacillus, Coprococcus, R. Gnavus Decrease: Proteobacteria, Gammaproteobacteria |
Bazin et al. [95] | 1. Impact of TNFi on gut microbiota in IBD-related SpA. 2. Research for bacteria predictive of the treatment with TNFi outcome in IBD-related SpA. | 19 SpA treated with TNFi. | Diversity restored, but no significant differences in the concentration of any bacteria; Burkholderiales as a predictor of responder to TNFi. |
Vallier et al. [96] | Research for bacteria predictive of the treatment outcome in AxSpA. | 61 AxSpA treated with TNFi. | Sutterella and Clostridia as predictor of non-responder to TNFi. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragazzi, M.C.; Pianigiani, F.; Venere, R.; Ridola, L. Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? J. Clin. Med. 2024, 13, 2237. https://doi.org/10.3390/jcm13082237
Bragazzi MC, Pianigiani F, Venere R, Ridola L. Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? Journal of Clinical Medicine. 2024; 13(8):2237. https://doi.org/10.3390/jcm13082237
Chicago/Turabian StyleBragazzi, Maria Consiglia, Federica Pianigiani, Rosanna Venere, and Lorenzo Ridola. 2024. "Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go?" Journal of Clinical Medicine 13, no. 8: 2237. https://doi.org/10.3390/jcm13082237