Predictive Factors of Cardiac Mortality Following TEER in Patients with Secondary Mitral Regurgitation
Abstract
:1. Introduction
2. Methods
2.1. Participant Selection
2.2. TEER Procedure
2.3. Clinical Variables Obtained
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. One-Year Primary Outcome
3.3. New Risk Score for the Primary Outcome
3.4. Post-Procedural Complications
3.5. Sub-Analysis to Further Risk Stratify the High-Risk Group
4. Discussion
4.1. Definition of the Primary Outcome
4.2. Risk Factors Associated with Post-TEER Cardiac Death
4.3. Clinical Implications of Our Findings
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enriquez-Sarano, M.; Michelena, H.I.; Grigioni, F. Treatment of Functional Mitral Regurgitation. Circulation 2019, 139, 2289–2291. [Google Scholar] [CrossRef]
- Maisano, F.; La Canna, G.; Colombo, A.; Alfieri, O. The evolution from surgery to percutaneous mitral valve interventions: The role of the edge-to-edge technique. J. Am. Coll. Cardiol. 2011, 58, 2174–2182. [Google Scholar] [CrossRef]
- Feldman, T.; Foster, E.; Glower, D.D.; Kar, S.; Rinaldi, M.J.; Fail, P.S.; Smalling, R.W.; Siegel, R.; Rose, G.A.; Engeron, E.; et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 2011, 364, 1395–1406. [Google Scholar] [CrossRef]
- Feldman, T.; Kar, S.; Elmariah, S.; Smart, S.C.; Trento, A.; Siegel, R.J.; Apruzzese, P.; Fail, P.; Rinaldi, M.J.; Smalling, R.W.; et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II. J. Am. Coll. Cardiol. 2015, 66, 2844–2854. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Obadia, J.F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefevre, T.; Piot, C.; Rouleau, F.; Carrie, D.; et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef]
- Hayashida, K.; Yasuda, S.; Matsumoto, T.; Amaki, M.; Mizuno, S.; Tobaru, T.; Jujo, K.; Ootomo, T.; Yamaguchi, J.; Fukuda, K.; et al. AVJ-514 Trial—Baseline Characteristics and 30-Day Outcomes Following MitraClip((R)) Treatment in a Japanese Cohort. Circ. J. 2017, 81, 1116–1122. [Google Scholar] [CrossRef]
- Seneviratne, B.; Moore, G.A.; West, P.D. Effect of captopril on functional mitral regurgitation in dilated heart failure: A randomised double blind placebo controlled trial. Br. Heart J. 1994, 72, 63–68. [Google Scholar] [CrossRef]
- Pu, M.; Gao, Z.; Pu, D.K.; Davidson, W.R., Jr. Effects of early, late, and long-term nonselective beta-blockade on left ventricular remodeling, function, and survival in chronic organic mitral regurgitation. Circ. Heart Fail. 2013, 6, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, M.K.; Rajagopal, K.; Itoh, A.; Silvestry, S.C.; Uriel, N.; Cleveland, J.C., Jr.; Salerno, C.T.; Horstmanshof, D.; Goldstein, D.J.; Naka, Y.; et al. Impact of left ventricular assist device implantation on mitral regurgitation: An analysis from the MOMENTUM 3 trial. J. Heart Lung Transplant. 2020, 39, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Imamura, T.; Ueno, H.; Kinugawa, K. MitraClip or Ventricular Assist Device? Int. Heart J. 2020, 61, 1303–1306. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Calhoon, J.H.; Moon, M.R.; Tommaso, C.L. Transcatheter therapies for mitral regurgitation: A professional society overview from the American College of Cardiology, the American Association for Thoracic Surgery, Society for Cardiovascular Angiography and Interventions Foundation, and the Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2014, 63, 840–852. [Google Scholar]
- Wunderlich, N.C.; Siegel, R.J. Peri-interventional echo assessment for the MitraClip procedure. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.J.; Rogers, J.H.; Swan, C.H.; Upadhyaya, D.; Viloria, E.; McCulloch, C.; Slater, J.; Qureshi, M.; Williams, J.; Whisenant, B.; et al. Echocardiographic predictors of single versus dual MitraClip device implantation and long-term reduction of mitral regurgitation after percutaneous repair. Catheter. Cardiovasc. Interv. 2013, 82, 673–679. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef]
- Rios, S.; Li, W.; Mustehsan, M.H.; Hajra, A.; Takahashi, T.; Chengyue, J.; Wu, L.; Katamreddy, A.; Ghalib, N.; Scotti, A.; et al. Impact of Frailty on Outcomes after Transcatheter Edge-to-Edge Repair with MitraClip (from the National Inpatient Sample Database). Am. J. Cardiol. 2022, 179, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kreusser, M.M.; Geis, N.A.; Berlin, N.; Greiner, S.; Pleger, S.T.; Bekeredjian, R.; Katus, H.A.; Raake, P.W. Invasive hemodynamics and cardiac biomarkers to predict outcomes after percutaneous edge-to-edge mitral valve repair in patients with severe heart failure. Clin. Res. Cardiol. 2019, 108, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Ricci, F.; Dangas, G.D.; Rana, B.S.; Ceriello, L.; Testa, L.; Khanji, M.Y.; Caterino, A.L.; Fiore, C.; Popolo Rubbio, A.; et al. Selection of the Optimal Candidate to MitraClip for Secondary Mitral Regurgitation: Beyond Mitral Valve Morphology. Front. Cardiovasc. Med. 2021, 8, 585415. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Madhavan, M.V.; Gray, W.A.; Brener, S.J.; Ahmad, Y.; Lindenfeld, J.; Abraham, W.T.; Grayburn, P.A.; Kar, S.; Lim, D.S.; et al. Prediction of Death or HF Hospitalization in Patients with Severe FMR: The COAPT Risk Score. JACC Cardiovasc. Interv. 2022, 15, 1893–1905. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, L.W.; Pagani, F.D.; Young, J.B.; Jessup, M.; Miller, L.; Kormos, R.L.; Naftel, D.C.; Ulisney, K.; Desvigne-Nickens, P.; Kirklin, J.K. INTERMACS profiles of advanced heart failure: The current picture. J. Heart Lung Transplant. 2009, 28, 535–541. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Shah, P.; Lala, A.; McLean, R.C.; Pamboukian, S.; Horstmanshof, D.A.; Thibodeau, J.; Shah, K.; Teuteberg, J.; Gilotra, N.A.; et al. INTERMACS profiles and outcomes of ambulatory advanced heart failure patients: A report from the REVIVAL Registry. J. Heart Lung Transplant. 2020, 39, 16–26. [Google Scholar] [CrossRef]
- Estep, J.D.; Starling, R.C.; Horstmanshof, D.A.; Milano, C.A.; Selzman, C.H.; Shah, K.B.; Loebe, M.; Moazami, N.; Long, J.W.; Stehlik, J.; et al. Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients: Results from the ROADMAP Study. J. Am. Coll. Cardiol. 2015, 66, 1747–1761. [Google Scholar] [CrossRef] [PubMed]
- Grayburn, P.A.; Sannino, A.; Packer, M. Proportionate and Disproportionate Functional Mitral Regurgitation: A New Conceptual Framework That Reconciles the Results of the MITRA-FR and COAPT Trials. JACC Cardiovasc. Imaging 2019, 12, 353–362. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Nishimura, T.; Toda, K.; Saiki, Y.; Niinami, H.; Nunoda, S.; Matsumiya, G.; Nishimura, M.; Arai, H.; et al. Novel Scoring System to Risk Stratify Patients Receiving Durable Left Ventricular Assist Device from J-MACS Registry Data. Circ. J. 2023, 87, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Imamura, T.; Narang, N.; Fukuo, A.; Nakamura, M.; Fukuda, N.; Ueno, H.; Kinugawa, K. Case series of transcatherter edge-to-edge repair using MitraClip() system with Impella((R)) mechanical circulatory support. Eur. Heart J. Case Rep. 2022, 6, ytac370. [Google Scholar] [CrossRef] [PubMed]
- Sobajima, M.; Fukuda, N.; Ueno, H.; Kinugawa, K. A case report of advanced heart failure refractory to pharmacological therapy who was successfully recovered by combinatory usage of cardiac resynchronizing therapy, Impella and MitraClip. Eur. Heart J. Case Rep. 2020, 4, 1–5. [Google Scholar] [CrossRef]
Total (N = 1511) | Cardiac Death (N = 101) | No Cardiac Death (N = 1410) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Age, years | 78 (71, 84) | 80 (74, 85) | 78 (71, 84) | 0.096 |
Male sex | 899 (60%) | 63 (63%) | 836 (59%) | 0.31 |
Body mass index, kg/m2 | 21.2 (18.9, 23.5) | 20.4 (18.1, 22.7) | 21.3 (19.0, 23.5) | 0.036 * |
NYHA class III or IV | 982 (65%) | 82 (82%) | 900 (64%) | <0.001 * |
Heart failure admission times within the past one year | 1 (1, 2) | 1 (1, 2) | 1 (0, 2) | 0.014 * |
0 time | 376 (25%) | 21 (21%) | 355 (25%) | 0.010 * |
1 time | 670 (44%) | 35 (35%) | 635 (45%) | 0.010 * |
2 times | 305 (20%) | 21 (21%) | 284 (20%) | 0.010 * |
≥3 times | 160 (11%) | 24 (24%) | 136 (10%) | 0.010 * |
Etiology of MR | ||||
Primary MR | 0 (0%) | 0 (0%) | 0 (0%) | - |
Secondary MR | 1511 (100%) | 101 (100%) | 1410 (100%) | - |
Comorbidity | ||||
Hypertension | 996 (66%) | 59 (59%) | 937 (66%) | 0.063 |
Dyslipidemia | 862 (57%) | 44 (44%) | 818 (58%) | 0.003 * |
Atrial fibrillation | 976 (65%) | 73 (73%) | 903 (64%) | 0.057 |
History of ventricular tachyarrhythmia | 199 (13%) | 21 (21%) | 178 (13%) | 0.018 * |
History of coronary intervention | 593 (39%) | 34 (34%) | 549 (39%) | 0.62 |
History of open heart surgery | 177 (12%) | 8 (8%) | 169 (12%) | 0.14 |
History of stroke | 173 (11%) | 14 (14%) | 159 (11%) | 0.26 |
PM/ICD/CRT-D/CRT-P | 105/102/189/23 | 7/7/20/2 | 98/95/169/21 | 0.23 |
Laboratory data | ||||
Hemoglobin, g/dL | 11.6 (10.4, 12.9) | 10.7 (9.7, 12.0) | 11.7 (10.4, 13.0) | <0.001 * |
Serum creatinine, mg/dL | 1.3 (1.0, 1.9) | 1.5 (1.1, 2.2) | 1.3 (1.0, 1.9) | 0.077 |
Plasma B-type natriuretic peptide, log10 pg/mL | 2.7 (2.4, 2.9) | 2.9 (2.6, 3.2) | 2.6 (2.3, 2.9) | <0.001 * |
Echocardiographic data | ||||
Left ventricular end-diastolic diameter, mm | 60 (53, 67) | 62 (54, 70) | 60 (53, 67) | 0.046 * |
Left ventricular ejection fraction, % | 36 (29, 48) | 33 (26, 44) | 36 (29, 49) | 0.004 * |
<40% | 907 (60%) | 72 (72%) | 835 (59%) | 0.056 |
40–49% | 260 (17%) | 13 (13%) | 247 (18%) | 0.056 |
≥50% | 344 (23%) | 16 (16%) | 328 (23%) | 0.056 |
Left atrial volume index, mL/m2 | 76 (58, 104) | 90 (67, 116) | 76 (58, 104) | 0.003 * |
Effective regurgitant orifice area, cm2 | 30 (22, 40) | 32 (25, 45) | 30 (22, 40) | 0.38 |
Regurgitant volume, mL | 48 (36, 61) | 48 (37, 61) | 47 (36, 61) | 0.67 |
Moderate or greater tricuspid regurgitation | 524 (35%) | 39 (39%) | 485 (34%) | 0.14 |
Medications | ||||
Beta-blocker | 1238 (82%) | 79 (79%) | 1159 (82%) | 0.19 |
Renin-angiotensin system inhibitor | 941 (62%) | 61 (61%) | 880 (62%) | 0.38 |
Mineralocorticoid receptor antagonist | 876 (58%) | 64 (64%) | 812 (58%) | 0.15 |
Sodium-glucose cotransporter 2 inhibitor | 192 (13%) | 18 (18%) | 174 (12%) | 0.079 |
Dose of furosemide, mg/day | 20 (20, 40) | 20 (20, 40) | 20 (20, 40) | 0.84 |
Intravenous inotropes | 176 (12%) | 23 (23%) | 153 (11%) | 0.001 * |
Univariable Analysis | Multivariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age, years | 1.02 (0.99–1.04) | 0.14 | ||||
Male sex | 1.14 (0.76–1.71) | 0.52 | ||||
Body mass index, kg/m2 | 0.95 (0.89–1.01) | 0.056 | ||||
HF admission number within the past one year | 1.33 (1.14–1.54) | <0.001 * | 1.26 (1.07–1.47) | 0.005 * | 1.28 (1.09–1.50) | 0.002 * |
Atrial fibrillation | 1.46 (0.95–2.26) | 0.087 | ||||
History of ventricular tachyarrhythmia | 1.74 (1.08–2.81) | 0.024 * | 1.46 (0.87–2.42) | 0.15 | ||
Intravenous inotropes use | 2.50 (1.57–3.97) | <0.001 * | 1.81 (1.11–2.94) | 0.017 * | 1.95 (1.21–3.13) | 0.006 * |
Serum creatinine, mg/dL | 1.07 (0.96–1.20) | 0.20 | ||||
Plasma BNP, log10 pg/mL | 2.53 (1.71–3.75) | <0.001 * | 2.39 (1.55–3.67) | <0.001 * | 2.40 (1.59–3.63) | <0.001 * |
ECG width, msec | 1.01 (0.99–1.02) | 0.19 | ||||
LVDD, mm | 1.02 (1.01–1.04) | 0.035 * | 1.01 (0.098–1.03) | 0.70 | ||
LVEF, % | 0.98 (0.97–0.99) | 0.012 * | 0.99 (0.98–1.02) | 0.82 | ||
Furosemide dose, mg/day | 1.01 (0.99–1.02) | 0.21 |
Low-Risk (N = 647) | Intermediate-Risk (N = 652) | High-Risk (N = 212) | p-Value | |
---|---|---|---|---|
Post-procedure moderate or greater MR | 94 (15%) | 93 (14%) | 35 (17%) | 0.72 |
Post-procedure moderate or greater TR | 195 (30%) | 160 (25%) | 60 (28%) | 0.074 |
Index hospitalization days | 11 (7, 20) | 17 (10, 31) | 21 (12, 36) | <0.001 * |
In-hospital death | 1 (1%) | 25 (4%) | 6 (3%) | <0.001 * |
Access site-related complication | 13 (2%) | 17 (3%) | 3 (1%) | 0.54 |
Acute kidney injury | 10 (2%) | 23 (3%) | 5 (3%) | 0.073 |
Single leaflet device attachment | 10 (2%) | 8 (1%) | 2 (1%) | 0.77 |
Leaflet tear | 6 (1%) | 9 (1%) | 6 (3%) | 0.12 |
Clip embolization | 0 (0%) | 0 (0%) | 0 (0%) | - |
Recurrence of moderate or greater MR | 47 (7%) | 37 (6%) | 9 (4%) | 0.24 |
Redo clipping | 2 (1%) | 0 (0%) | 0 (0%) | 0.31 |
Heart failure readmission | 100 (15%) | 150 (23%) | 69 (33%) | <0.001 * |
Hazard Ratio (95% CI) | p-Value | |
---|---|---|
Post-procedure moderate or greater MR | 0.97 (0.37–2.52) | 0.95 |
Post-procedure moderate or greater TR | 1.57 (0.75–3.27) | 0.23 |
Length of hospital stay, ×10 days | 1.10 (1.01–1.21) | 0.046 * |
Acute kidney injury | 1.45 (0.20–10.6) | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamura, T.; Tanaka, S.; Ushijima, R.; Fukuda, N.; Ueno, H.; Kinugawa, K.; Kubo, S.; Yamamoto, M.; Saji, M.; Asami, M.; et al. Predictive Factors of Cardiac Mortality Following TEER in Patients with Secondary Mitral Regurgitation. J. Clin. Med. 2024, 13, 851. https://doi.org/10.3390/jcm13030851
Imamura T, Tanaka S, Ushijima R, Fukuda N, Ueno H, Kinugawa K, Kubo S, Yamamoto M, Saji M, Asami M, et al. Predictive Factors of Cardiac Mortality Following TEER in Patients with Secondary Mitral Regurgitation. Journal of Clinical Medicine. 2024; 13(3):851. https://doi.org/10.3390/jcm13030851
Chicago/Turabian StyleImamura, Teruhiko, Shuhei Tanaka, Ryuichi Ushijima, Nobuyuki Fukuda, Hiroshi Ueno, Koichiro Kinugawa, Shunsuke Kubo, Masanori Yamamoto, Mike Saji, Masahiko Asami, and et al. 2024. "Predictive Factors of Cardiac Mortality Following TEER in Patients with Secondary Mitral Regurgitation" Journal of Clinical Medicine 13, no. 3: 851. https://doi.org/10.3390/jcm13030851