Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Brück, K.; Stel, V.S.; Gambaro, G.; Hallan, S.; Völzke, H.; Ärnlöv, J.; Kastarinen, M.; Guessous, I.; Vinhas, J.; Stengel, B.; et al. European CKD Burden Consortium. CKD Prevalence Varies across the European General Population. J. Am. Soc. Nephrol. 2016, 27, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Tantisattamo, E.; Dafoe, D.C.; Reddy, U.G.; Ichii, H.; Rhee, C.M.; Streja, E.; Landman, J.; Kalantar-Zadeh, K. Current Management of Patients with Acquired Solitary Kidney. Kidney Int. Rep. 2019, 4, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.; Goldfarb, D.A.; Ritchey, M.L. The Congenital and Acquired Solitary Kidney. Rev. Urol. 2003, 5, 2–8. [Google Scholar]
- International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today (accessed on 1 November 2024).
- Heller, M.T.; Schnor, N. MDCT of Renal Trauma: Correlation to AAST Organ Injury Scale. Clin. Imaging 2014, 38, 410–417. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.-U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for Kidney Function and Disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef]
- Trevisani, F.; Floris, M.; Trepiccione, F.; Rosiello, G.; Capasso, G.; Pani, A.; Maculan, M.; Mascia, G.; Silvestre, C.; Bettiga, A.; et al. Surgery or Comorbidities: What Is the Primum Movens of Kidney Dysfunction after Nephrectomy? A Multicenter Study in Living Donors and Cancer Patients. J. Clin. Med. 2024, 13, 6551. [Google Scholar] [CrossRef]
- Ellis, R.J.; Cameron, A.; Gobe, G.C.; Diwan, V.; Healy, H.G.; Lee, J.; Tan, K.-S.; Venuthurupalli, S.; Zhang, J.; Hoy, W.E. Kidney Failure, CKD Progression, and Mortality after Nephrectomy. Int. Urol. Nephrol. 2022, 54, 2239–2245. [Google Scholar] [CrossRef]
- Lau, W.K.; Blute, M.L.; Weaver, A.L.; Torres, V.E.; Zincke, H. Matched Comparison of Radical Nephrectomy vs. Nephron-Sparing Surgery in Patients with Unilateral Renal Cell Carcinoma and a Normal Contralateral Kidney. Mayo Clin. Proc. 2000, 75, 1236–1242. [Google Scholar] [CrossRef]
- McKiernan, J.; Simmons, R.; Katz, J.; Russo, P. Natural History of Chronic Renal Insufficiency after Partial and Radical Nephrectomy. Urology 2002, 59, 816–820. [Google Scholar] [CrossRef]
- Huang, W.C.; Levey, A.S.; Serio, A.M.; Snyder, M.; Vickers, A.J.; Raj, G.V.; Scardino, P.T.; Russo, P. Chronic Kidney Disease after Nephrectomy in Patients with Renal Cortical Tumors: A Retrospective Cohort Study. Lancet Oncol. 2006, 7, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Velmahos, G.C.; Constantinou, C.; Gkiokas, G. Does Nephrectomy for Trauma Increase the Risk of Renal Failure? World J. Surg. 2005, 29, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Muzaale, A.D.; Massie, A.B.; Bae, S.; Luo, X.; Grams, M.E.; Lentine, K.L.; Garg, A.X.; Segev, D.L. Patterns of End-Stage Renal Disease Caused by Diabetes, Hypertension, and Glomerulonephritis in Live Kidney Donors. Am. J. Transplant. 2016, 16, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Pricop, C.; Puia, D.; Chiriac, I.; Miron, A. The Follow-Up of Patients with Surgical Solitary Kidney—The Underestimated Role of Comorbidities. Med. Surg. J.–Rev. Med. Chir. Soc. Med. Nat. 2023, 127, 402–407. [Google Scholar] [CrossRef]
- Garg, A.X.; Arnold, J.B.; Cuerden, M.S.; Dipchand, C.; Feldman, L.S.; Gill, J.S.; Karpinski, M.; Klarenbach, S.; Knoll, G.; Lok, C.E.; et al. Hypertension and Kidney Function after Living Kidney Donation. JAMA 2024, 332, 287–299. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, W.; Ren, H.; Zhang, W.; Chen, N. Analysis of Factors Associated with Renal Function in Chinese Adults with Congenital Solitary Kidney. Intern. Med. 2010, 49, 2203–2209. [Google Scholar] [CrossRef]
- Alp, A.; Saruhan, E.; Doğan, E.; Genek, D.G.; Huddam, B. Time to Change Our Viewpoints to Assess Renal Risks in Patients with Solitary Kidneys beyond Traditional Approaches? J. Clin. Med. 2023, 12, 6885. [Google Scholar] [CrossRef]
- Jungers, P.; Joly, D.; Barbey, F.; Choukroun, G.; Daudon, M. ESRD Caused by Nephrolithiasis: Prevalence, Mechanisms, and Prevention. Am. J. Kidney Dis. 2004, 44, 799–805. [Google Scholar] [CrossRef]
- Rule, A.D.; Bergstralh, E.J.; Melton, L.J., 3rd; Li, X.; Weaver, A.L.; Lieske, J.C. Kidney Stones and the Risk for Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 804–811. [Google Scholar] [CrossRef]
- Hoshino, J.; Ohigashi, T.; Tsunoda, R.; Ito, Y.; Kai, H.; Saito, C.; Okada, H.; Narita, I.; Wada, T.; Maruyama, S.; et al. Physical Activity and Renal Outcome in Diabetic and Non-Diabetic Patients with Chronic Kidney Disease Stage G3b to G5. Sci. Rep. 2024, 14, 26378. [Google Scholar] [CrossRef]
- Brenner, B.M. Hemodynamically Mediated Glomerular Injury and the Progressive Nature of Kidney Disease. Kidney Int. 1983, 23, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Deagostini, M.C.; Vigotti, F.N.; Ferraresi, M.; Moro, I.; Consiglio, V.; Scognamiglio, S.; Mongilardi, E.; Clari, R.; Aroasio, E.; et al. Which Low-Protein Diet for Which CKD Patient? An Observational, Personalized Approach. Nutrition 2014, 30, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Paredes, A.R.; Gómez García, A.; Alvarez Paredes, M.A.; Velázquez, N.; Ojeda Bolaños, D.C.; Padilla Sandoval, M.S.; Gallardo, J.M.; Muñoz Cortés, G.; Reyes Granados, S.C.; Rodríguez Morán, M.F.; et al. Prevalence and Metabolic Risk Factors of Chronic Kidney Disease among a Mexican Adult Population: A Cross-Sectional Study in Primary Healthcare Medical Units. PeerJ 2024, 12, e17817. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, P.A.; Scheinman, S.J.; Dunham, P.B.; Jones, D.B.; Hueber, P.; Schroeder, E.T. X-Linked Recessive Nephrolithiasis with Renal Failure. N. Engl. J. Med. 1991, 325, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Worcester, E.M.; Coe, F.L.; Evan, A.P.; Parks, J.H. Reduced Renal Function and Benefits of Treatment in Cystinuria vs. Other Forms of Nephrolithiasis. BJU Int. 2006, 97, 1285–1290. [Google Scholar] [CrossRef]
- Nerli, R.; Jali, M.; Guntaka, A.K.; Patne, P.; Patil, S.; Hiremath, M.B. Type 2 Diabetes Mellitus and Renal Stones. Adv. Biomed. Res. 2015, 4, 180. [Google Scholar] [CrossRef]
- Pricop, C.; Ivănuță, M.; Nikolic, M.; Puia, D. Kidney Stones of Type I vs. Type II Diabetic Patients: Are There Any Differences? J. Clin. Med. 2024, 13, 6110. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Ozbek, L.; Abdel-Rahman, S.M.; Unlu, S.; Guldan, M.; Copur, S.; Burlacu, A.; Covic, A.; Kanbay, M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. Medicina 2024, 60, 1668. [Google Scholar] [CrossRef]
Parameter | n | % | |
---|---|---|---|
Gender | Male | 69 | 60 |
Female | 46 | 40 | |
Hypertension | Yes | 51 | 44.3 |
No | 64 | 55.7 | |
Diabetes | Yes | 62 | 53.9 |
No | 53 | 46.1 | |
Dyslipidaemia | Yes | 69 | 60 |
No | 46 | 40 | |
History of kidney stones | Yes | 29 | 25.2 |
No | 86 | 74.8 | |
Smoking | Yes | 61 | 53 |
No | 54 | 47 | |
Alcohol consumption | Yes | 54 | 47 |
No | 61 | 53 | |
Preoperative status of the remaining kidney | Normal | 87 | 75.7 |
Non-obstructive lithiasis | 18 | 15.6 | |
Cysts | 10 | 8.7 | |
The primary indication for nephrectomy | Renal tumour | 56 | 48.7 |
Urothelial tumour | 18 | 15.7 | |
Pyonephrosis | 26 | 22.6 | |
Trauma | 5 | 5.2 | |
Congenital hydronephrosis | 2 | 1.7 | |
Emphysematous pyelonephritis | 6 | 5.2 | |
Post percutaneous nephrolithotomy | 1 | 0.9 |
Whole Sample (n = 115) | RT (n = 56) | UT (n = 18) | PYN (n = 26) | TR (n = 5) | CH (n = 2) | EP (n = 6) | |
---|---|---|---|---|---|---|---|
Mean preoperative creatinine (mg/dL) (±SD) | 1.27 (±0.45) | 1.16 (±0.24) | 1.27 (±0.22) | 1.21 (±0.18) | 1.04 (±0.21) | 1.33 (±0.11) | 2.92 (±0.51) |
Mean postoperative creatinine (mg/dL) (±SD) | 1.47 (±0.85) | 1.42 (±0.80) | 1.35 (±0.66) | 1.35 (±0.63) | 1.25 (±0.74) | 1.05 (±0.16) | 3.32 (±0.89) |
Mean creatinine 1 month postoperatively (mg/dL) (±SD) | 1.29 (±0.37) | 1.16 (±0.24) | 1.27 (±0.25) | 1.28 (±0.33) | 1.34 (±0.37) | 1.56 (±0.53) | 2.19 (±1.09) |
Mean creatinine 12 months postoperatively (mg/dL) (±SD) | 1.74 (±0.50) | 1.82 (±0.69) | 1.83 (±0.43) | 1.42 (±0.52) | 1.42 (±0.78) | 1.33 (±0.58) | 2.88 (±1.04) |
Mean creatinine 24 months postoperatively (mg/dL) (±SD) | 1.72 (±0.69) | 1.78 (±0.70) | 1.82 (±0.38) | 1.42 (±0.51) | 1.45 (±0.80) | 1.38 (±0.54) | 2.84 (±1.02) |
Mean creatinine 36 months postoperatively (mg/dL) (±SD) | 1.71 (±0.70) | 1.76 (±0.67) | 1.88 (±0.59) | 1.39 (±0.52) | 1.37 (±0.73) | 1.40 (±0.57) | 2.73 (±0.91) |
Whole Sample | RT | UT | PYN | TR | CH | EP | |
---|---|---|---|---|---|---|---|
Preoperative vs. immediate postoperative (CI 95%) | 0.007 (−0.337–−0.054) | 0.02 (−0.478–−0.027) | 0.57 (−0.405–−0.233) | 0.30 (−0.404–0.132) | 0.54 (−1.063–0.633) | 0.08 (−0.169–0.719) | 0.38 (−1.489–0.689) |
Preoperative vs. 1 month postoperative (CI 95%) | 0.45 (−0.070–0.157) | 0.01 (−0.295–−0.029) | 0.97 (−0.083–−0.083) | 0.39 (0.083–−0.009) | 0.17 (−0.789–0.186) | 0.57 (−3.983–3.513) | 0.002 (1.041–2.334) |
Preoperative vs. 12 months postoperative (CI 95%) | <0.001 (−0.529–−0.282) | <0.001 (−0.416–−6.413) | 0.003 (−0.660–−0.166) | 0.04 (0.415–0.009) | 0.217 (−1.085–0.315) | 0.91 (−6.354–6.224) | 0.862 (−1.401–1.225) |
Preoperative vs. 24 months postoperative (CI 95%) | <0.001 (−0.500–−0.282) | <0.001 (−0.794–0.416) | 0.001 (−0.627–0.188) | 0.02 (−0.398–− 0.031) | 0.19 (−1.135–0.305) | 0.92 (−5.963–5.853) | 0.91 (−1.338–1.234) |
Preoperative vs. 36 months postoperative (CI 95%) | <0.001 (−0.534–−0.283) | <0.001 (−0395–−6.317) | 0.003 (−0.909–−0.217) | 0.06 (−0.379–0.010) | 0.26 (−1.001–0.341) | 0.90 (−6.237–6.087) | 0.96 (1.225–−0.049) |
Whole Sample (n = 115) | RT (n = 56) | UT (n = 18) | PYN (n = 26) | TR (n = 5) | CH (n = 2) | EP (n = 6) | |
---|---|---|---|---|---|---|---|
Mean preoperative eGFR (±SD) (mL/min/1.73 m2) | 70.67 (±19.6) | 73.95 (±17.38) | 71.16 (±11.56) | 71.67 (±17.80) | 77.32 (±17.65) | 54.75 (±27.29) | 23.13 (±8.90) |
Mean postoperative eGFR (±SD) (mL/min/1.73 m2) | 70.65 (±19.58) | 62.53 (±27.82) | 58.08 (±24.14) | 64.06 (±25.99) | 75.81 (±32.68) | 80.90 (±12.93) | 45.80 (±48.79) |
Mean eGFR (±SD) (mL/min/1.73 m2) 1 month postoperatively | 60.55 (±20.06) | 57.70 (±18.59) | 62.56 (±22.05) | 60.89 (±20.69) | 68.08 (±21.84) | 56.09 (±20.66) | 65.90 (±12.91) |
Mean eGFR (±SD) (mL/min/1.73 m2) 12 months postoperatively | 52.29 (±27.02) | 50.13 (±24.22) | 61.93 (±21.09) | 60.01 (±31.49) | 69.95 (±38.14) | 80.30 (±13.57) | 18.45 (±6.71) |
Mean eGFR (±SD) (mL/min/1.73 m2) 24 months postoperatively | 52.36 (±26.42) | 51.87 (±24.17) | 43.62 (±17.57) | 59.33 (±30.78) | 70.68 (±34.42) | 58.75 (±29.90) | 18.77 (±6.99) |
Mean eGFR (±SD) (mL/min/1.73 m2) 36 months postoperatively | 51.73 (±26.55) | 49.02 (±23.89) | 44.77 (±20.50) | 60.77 (±31.37) | 73.21 (±32.18) | 53.55 (±23.96) | 19.01 (±7.17) |
Whole Sample | RT | UT | PYN | TR | CH | EP | |
---|---|---|---|---|---|---|---|
Preoperative vs. immediate postoperative (CI 95%) | 0.22 (−0.009–0.042) | 0.01 (2.741–20.095) | 0.03 (0.732–25.538) | 0.22 (−4.954–20.163) | 0.92 (−38.033–41.049) | 0.23 (−155.186–102.876) | 0.24 (−67.047–21.681) |
Preoperative vs. 1 month postoperative (CI 95%) | 0.01 (5.112 –15.137) | <0.001 (9.506–22.984) | 0.11 (−1.920–19.122) | 0.04 (0.328–21.231) | 0.39 (−16.003–34.486) | 0.82 (−60.932–58.252) | 0.002 (−60.543–−25.029) |
Preoperative vs. 12 months postoperative (CI 95%) | 0.001 (13.189–23.577) | <0.001 (16.546–31.090) | <0.001 (14.890–33.761) | 0.09 (−2.106–25.402) | 0.45 (−18.340–35.090) | 0.53 (−392.759–341.659) | 0.21 (−5.46–18.166) |
Preoperative vs. 24 months postoperative (CI 95%) | 0.001 (13.212–23.401) | <0.001 (14.784–29.366) | <0.001 (17.964–37.117) | 0.06 (−0.723–25.402) | 0.53 (−18.785–32.069) | 0.93 (−517.907–509.897) | 0.23 (−5.946–18.014) |
Preoperative vs. 36 months postoperative (CI 95%) | 0.002 (13.720–24.153) | <0.001 (17.748–32.106) | <0.001 (14.595–38.197) | 0.10 (−2.487–24.281) | 0.64 (−24.310–27.560) | 0.97 (−459.341–461.731) | 0.25 (−6.390–18.002) |
Parameter | B | p | OR | 95% CI | |
---|---|---|---|---|---|
Gender | 0.344 | 0.493 | 1.4 | 0.527 | 3.776 |
Age | 0.034 | 0.01 | 1.03 | 1.007 | 1.063 |
Preoperative creatinine | 0.374 | 0.416 | 1.45 | 0.590 | 3.580 |
Hypertension | 0.995 | 0.03 | 2.7 | 1.066 | 6.862 |
Diabetes | 1.255 | 0.01 | 3.5 | 1.350 | 9.114 |
Dyslipidaemia | 0.850 | 0.06 | 2.3 | 0.951 | 5.758 |
Alcohol | 0.323 | 0.48 | 1.31 | 0.561 | 3.397 |
Smoking | −0.202 | 0.66 | 0.81 | 0.332 | 2.012 |
Preoperative lithiasis on the remaining kidney | 1.184 | 0.04 | 3.2 | 1.010 | 10.563 |
Preoperative cyst on the remaining kidney | −1.231 | 0.15 | 0.29 | 0.053 | 1.617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivănuță, M.; Puia, D.; Cimpoeșu, D.C.; Ivănuță, A.-M.; Bîcă, O.D.; Pricop, C. Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. J. Clin. Med. 2024, 13, 7470. https://doi.org/10.3390/jcm13237470
Ivănuță M, Puia D, Cimpoeșu DC, Ivănuță A-M, Bîcă OD, Pricop C. Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. Journal of Clinical Medicine. 2024; 13(23):7470. https://doi.org/10.3390/jcm13237470
Chicago/Turabian StyleIvănuță, Marius, Dragoș Puia, Diana Carmen Cimpoeșu, Ana-Maria Ivănuță, Ovidiu Daniel Bîcă, and Cătălin Pricop. 2024. "Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy" Journal of Clinical Medicine 13, no. 23: 7470. https://doi.org/10.3390/jcm13237470
APA StyleIvănuță, M., Puia, D., Cimpoeșu, D. C., Ivănuță, A.-M., Bîcă, O. D., & Pricop, C. (2024). Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. Journal of Clinical Medicine, 13(23), 7470. https://doi.org/10.3390/jcm13237470