Choice and Duration of Anticoagulation for Venous Thromboembolism
Abstract
1. Introduction
2. Overview of Anticoagulation
3. Phases of Management of VTE
3.1. Initiation Phase
3.2. Treatment Phase
3.3. Extended Phase
4. Special Considerations
4.1. Cancer-Associated Thrombosis Treatment
4.2. Thrombophilia and Antiphospholipid Syndrome Treatment
4.3. Concurrent Coronary Artery Disease and Venous Thromboembolism
4.4. COVID-19 Infection
5. Future Anticoagulation Options
6. Final Thoughts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beckman, M.G.; Hooper, W.C.; Critchley, S.E.; Ortel, T.L. Venous thromboembolism: A public health concern. Am. J. Prev. Med. 2010, 38 (Suppl. S4), S495–S501. [Google Scholar] [CrossRef]
- CDC. Data and Statistics on Venous Thromboembolism. Available online: https://www.cdc.gov/ncbddd/dvt/data.html (accessed on 6 November 2023).
- Kearon, C.; Ageno, W.; Cannegieter, S.C.; Cosmi, B.; Geersing, G.J.; Kyrle, P.A. Categorization of patients as having provoked or unprovoked venous thromboembolism: Guidance from the SSC of ISTH. J. Thromb. Haemost. 2016, 14, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Renner, E.; Barnes, G.D. Antithrombotic Management of Venous Thromboembolism: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 76, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.M.; Woller, S.C.; Baumann Kreuziger, L.; Bounameaux, H.; Doerschug, K.; Geersing, G.-J.; Huisman, M.V.; Kearon, C.; King, C.S.; Knighton, A.J.; et al. Executive Summary: Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest 2021, 160, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Vinson, D.R.; Ballard, D.W.; Huang, J.; Reed, M.E.; Lin, J.S.; Kene, M.V.; Sax, D.R.; Rauchwerger, A.S.; Wang, D.H.; McLachlan, D.I.; et al. MAPLE Investigators of the KP CREST Network. Outpatient Management of Emergency Department Patients with Acute Pulmonary Embolism: Variation, Patient Characteristics, and Outcomes. Ann. Emerg. Med. 2018, 72, 62–72.e3. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neuman, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [PubMed]
- Eichinger, S.; Heinze, G.; Jandeck, L.M.; Kyrle, P.A. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: The Vienna prediction model. Circulation 2010, 121, 1630–1636. [Google Scholar] [CrossRef]
- Rodger, M.A.; Kahn, S.R.; Wells, P.S.; Anderson, D.A.; Chagnon, I.; Le Gal, G.; Solymoss, S.; Crowther, M.; Perrier, A.; White, R.; et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ 2008, 179, 417–426. [Google Scholar] [CrossRef]
- Tosetto, A.; Iorio, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Douketis, J. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: A proposed prediction score (DASH). J. Thromb. Haemost. 2012, 10, 1019–1025. [Google Scholar] [CrossRef]
- Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; Raskob, G.E.; et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [PubMed]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Schellong, S.; Eriksson, H.; Baanstra, D.; Kvamme, A.M.; Friedman, J.; Mismetti, P.; Goldhaber, S.Z. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N. Engl. J. Med. 2013, 368, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Porcari, A.; Raskob, G.E.; Weitz, J.I. Apixaban for extended treatment of venous thromboembolism. N. Engl. J. Med. 2013, 368, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Lensing, A.W.A.; Prins, M.H.; Bauersachs, R.; Beyer-Westendorf, J.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 2017, 376, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- McBane, R., 2nd; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin inactive malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Li, A.; Garcia, D.A.; Lyman, G.H.; Carrier, M. Direct oral anticoagulant (DOAC) versus low-molecular weight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta-analysis. Thromb. Res. 2019, 173, 158–163. [Google Scholar] [CrossRef]
- Mosarla, R.C.; Vaduganathan, M.; Qamar, A.; Moslehi, J.; Piazza, G.; Giugliano, R.P. Anticoagulation Strategies in Patients With Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1336–1349. [Google Scholar] [CrossRef]
- Khairani, C.D.; Bejjani, A.; Piazza, G.; Jimenez, D.; Monreal, M.; Chatterjee, S.; Pengo, V.; Woller, S.C.; Cortes-Hernandez, J.; Connors, J.M.; et al. Direct Oral Anticoagulants vs Vitamin K Antagonists in Patients With Antiphospholipid Syndromes: Meta-Analysis of Randomized Trials. J. Am. Coll. Cardiol. 2023, 81, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Hunt, B.J.; Efthymiou, M.; Arachchillage, D.R.J.; Mackie, I.J.; Clawson, S.; Sylvestre, Y.; Machin, S.J.; Bertolaccini, M.L.; Ruiz-Castellano, M.; et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): A randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016, 3, e426–e436. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Ordi-Ros, J.; Saez-Comet, L.; Perez-Conesa, M.; Vidal, X.; Riera-Mestre, A.; Castro-Salomó, A.; Cuquet-Pedragosa, J.; Ortiz-Santamaria, V.; Mauri-Plana, M.; Solé, C.; et al. Rivaroxaban versus vitamin K antagonist in antiphospholipid syndrome: A randomized noninferiority trial. Ann. Intern. Med. 2019, 171, 685–694. [Google Scholar] [CrossRef]
- Woller, S.C.; Stevens, S.M.; Kaplan, D.; Wang, T.F.; Branch, D.W.; Groat, D.; Wilson, E.L.; Armbruster, B.; Aston, V.T.; Lloyd, J.F.; et al. Apixaban compared with warfarin to prevent thrombosis in thrombotic antiphospholipid syndrome: A randomized trial. Blood Adv. 2022, 6, 1661–1670. [Google Scholar] [CrossRef]
- Elsebaie, M.A.T.; van Es, N.; Langston, A.; Büller, H.R.; Gaddh, M. Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: A systematic review and meta-analysis. J. Thromb. Haemost. 2019, 17, 1538–7933. [Google Scholar]
- Kovacs, M.R.; Lazo-Langner, A.; Louzada, M.L.; Kovacs, M.J. Thrombophilia testing in patients receiving rivaroxaban or apixaban for the treatment of venous thromboembolism. Thromb. Res. 2020, 195, 231–232. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.L.; Sorensen, R.; Clausen, M.T.; Fog-Petersen, M.L.; Raunsø, J.; Gadsbøll, N.; Gislason, G.H.; Folke, F.; Andersen, S.S.; Schramm, T.K.; et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch. Intern. Med. 2010, 170, 1433–1441. [Google Scholar] [CrossRef]
- Kumbhani, D.J.; Cannon, C.P.; Beavers, C.J.; Bhatt, D.L.; Cuker, A.; Gluckman, T.J.; Marine, J.E.; Mehran, R.; Messe, S.R.; Patel, N.S.; et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients With Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or With Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 629–658. [Google Scholar]
- NIH. Antithrombotic Therapy in Patients with COVID-19. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antithrombotic-therapy (accessed on 26 November 2023).
- ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic anticoagulation with heparin in noncritically ill patients with COVID-19. N. Engl. J. Med. 2021, 385, 790–802. [Google Scholar] [CrossRef]
- Sholzberg, M.; Tang, G.H.; Rahhal, H.; AlHamzah, M.; Kreuziger, L.B.; Áinle, F.N.; Alomran, F.; Alayed, K.; Alsheef, M.; AlSumait, F.; et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with COVID-19 admitted to hospital: RAPID randomised clinical trial. BMJ 2021, 375, n2400. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Goldin, M.; Giannis, D.; Diab, W.; Wang, J.; Khanijo, S.; Mignatti, A.; Gianos, E.; Cohen, M.; Sharifova, G.; et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: The HEP-COVID randomized clinical trial. JAMA Intern. Med. 2021, 181, 1612–1620. [Google Scholar] [CrossRef]
- Stone, G.W.; Farkouh, M.E.; Lala, A.; Tinuoye, E.; Dressler, O.; Moreno, P.R.; Palacios, I.F.; Goodman, S.G.; Esper, R.B.; Abizaid, A.; et al. Randomized trial of anticoagulation strategies for noncritically ill patients hospitalized with COVID-19. J. Am. Coll. Cardiol. 2023, 81, 1747–1762. [Google Scholar] [CrossRef]
- Lopes, R.D.; de Barros, E.S.P.G.M.; Furtado, R.H.M.; Macedo, A.V.S.; Bronhara, B.; Damiani, L.P.; Barbosa, L.M.; de Aveiro Morata, J.; Ramacciotti, E.; de Aquino Martins, P.; et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): An open-label, multicentre, randomised, controlled trial. Lancet 2021, 397, 2253–2263. [Google Scholar] [CrossRef]
- Ramacciotti, E.; Agati, L.B.; Calderaro, D.; Aguiar, V.C.R.; Spyropoulos, A.C.; de Oliveira, C.C.C.; dos Santos, J.L.; Volpiani, G.G.; Sobreira, M.L.; Joviliano, E.E.; et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): An open-label, multicentre, randomised, controlled trial. Lancet 2022, 399, 50–59. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 143–151. [Google Scholar] [CrossRef]
- A Study Comparing Abelacimab to Apixaban in the Treatment of Cancer-associated VTE (ASTER). Available online: https://www.clinicaltrials.gov/study/NCT05171049 (accessed on 26 November 2023).
- A Study Comparing Abelacimab to Dalteparin in the Treatment of Gastrointestinal/Genitourinary Cancer and Associated VTE (MAGNOLIA). Available online: https://www.clinicaltrials.gov/study/NCT05171075 (accessed on 26 November 2023).
- Xisomab 3G3 for the Prevention of Catheter-Associated Thrombosis in Patients with Cancer Receiving Chemotherapy. Available online: https://clinicaltrials.gov/study/NCT04465760 (accessed on 26 November 2023).
Major Transient Risk Factors | Minor Transient Risk Factors | Persistent Risk Factors |
---|---|---|
-Cesarean section. -Confined to hospital bed for 3 days. -Surgery with general anesthesia for >30 min. | -Confined to bed out of hospital for 3 days. -Hospitalization < 3 days. -Leg injury. -Pregnancy. -Estrogen therapy. -Acute infectious illness (e.g., COVID-19) without hospitalization. | -Active cancer. -Inflammatory bowel disease. -Obesity. -Chronic inflammatory condition. -Advanced age. -Previous venous thromboembolism. -Genetic/acquired thrombophilia (APS, protein C&S deficiency, etc.). |
Generic Name | Mechanism of Action | Dose and Regimen | Consideration of Renal Function | Consideration of Drug Interactions | Other Considerations |
---|---|---|---|---|---|
Apixaban | Factor Xa Inhibitor | 10 mg BID × 7 days, followed by 5 mg BID | Not studied in patients with SCr ≥ 2.5 mg/dL or CrCl <25 mL/min | Reducing dose by 50% in patients taking strong dual inhibitors of p-glycoprotein and CYP 3A4. Avoiding in patients taking dual inducers of CYP 34A and p-glycoprotein. | N/a |
Dabigatran | Direct Thrombin Inhibitor | 150 mg BID after 5–10 days of parenteral anticoagulation lead in | Avoid in CrCl ≤ 30 mL/min | If CrCl ≤ 50 mL/min, patients taking p-glycoprotein inhibitors should avoid dabigatran. Patients taking p-glycoprotein inducers should avoid dabigatran. | N/a |
Edoxaban | Factor Xa Inhibitor | 60 mg daily after 5–10 days of parenteral anticoagulation lead in | Renally dose to 30 mg daily for CrCl 15–50 mL/min. Avoid in CrCl <15 mL/min | Reduce dose to 30 mg daily for patients taking p-glycoprotein inhibitors. Avoid using with p-glycoprotein inducers. | Reduce dose to 30 mg daily for body weight ≤ 60 kg. |
Rivaroxaban | Factor Xa Inhibitor | 15 mg twice a day for 21 days, then 20 mg daily | Avoid in CrCl ≤ 15 mL/min | In patients taking moderate dual inhibitors of CYP 3A4 and p-glycoprotein with CrCl ≤ 80 mL/min, use cautiously. Avoid use in patients taking strong dual inhibitors or inducers of CYP 3A4 and p-glycoprotein. | Administer with food. |
Warfarin | Vitamin K Antagonist | Adjusted to target INR 2–3 Require parenteral anticoagulation overlap at initiation | None | Consider reducing starting dose to 2.5 mg for patients with drug–drug interactions expected to increase exposure to warfarin. | Consider reducing starting dose to 2.5 mg for patients with multiple comorbidities, advanced age, and advanced end-organ dysfunction. |
Clinical Trial (Ref. #) | Included Patients | N | Trial Design | Length of Follow-Up | Treatment Groups | Primary Efficacy Outcomes | Efficacy Outcomes | Major Bleeding Outcomes |
---|---|---|---|---|---|---|---|---|
RAPS [23] | Patients with APS who were taking warfarin for previous VTE | 116 | Open-label RCT | 210 days | Continue warfarin vs. rivaroxaban 20 mg daily | Percentage change in endogenous thrombin potential at day 42, with non-inferiority set at less than 20% difference from warfarin | ETP (nmol/L per min): Rivaroxaban 1086 vs. warfarin 548 Treatment effect (ratio): 2.0 (1.7–2.4) | Rivaroxaban: 0 Warfarin: 0 |
TRAPS [24] | Patients with APS (triple positivity) with history of thrombus | 120 | Open-label RCT | 569 days (mean) | Rivaroxaban 20 mg or 15 mg daily (dependent on creatine clearance) vs. warfarin | Cumulative incidence of thromboembolic events, major bleeding, and vascular death | Rivaroxaban: 19% Warfarin: 3% HR: 6.7 (1.5–30.5) | Rivaroxaban: 7% Warfarin: 3% HR: 2.5 (0.5–13.6) |
Ordi-Ros et al. [25] | Patients with APS (positive result on aPL testing on 2 occasions at least 3 months apart) with history of thrombus | 190 | Open-label RCT | 36 months | Rivaroxaban 20 mg or 15 mg daily (dependent on creatine clearance) vs. warfarin | Proportion of patients with new thrombotic event | Rivaroxaban: 11.6% Warfarin: 6.3% HR: 1.94 (0.72–5.24) | Rivaroxaban: 6.3% Warfarin: 7.4% HR: 0.88 (0.3–2.63) |
ASTRO-APS [26] | Patients with thrombotic antiphospholipid syndrome on anticoagulation for secondary prevention | 48 | Open-label RCT | 12 months | Apixaban 2.5 mg BID then increased to 5 mg BID (after 25 patient was randomized) vs. warfarin | Thrombosis and vascular death | Apixaban: 6 thrombotic events Warfarin: no thrombotic events | Apixaban: 0 Warfarin: 1 event |
Clinical Trial Reference (Status) | Drug | Mechanism of Action | N | Clinical Trial Summary | Results |
---|---|---|---|---|---|
ASTER NCT05171049 (Ongoing) [39] | Abelacimab | Binds and inhibits Factor XI and Factor XIa | 1655 | Phase III trial comparing the effect of abelacimab relative to apixaban on VTE recurrence and bleeding in patients with CAT | No results currently |
MAGNOLIA NCT05171075 (Ongoing) [40] | Abelacimab | Binds and inhibits Factor XI and Factor XIa | 1020 | Phase III trial comparing the effect of abelacimab vs. dalteparin on VTE recurrence and bleeding in patients with gastrointestinal or genitourinary CAT | No results currently |
NCT04465760 (Recruiting) [41] | Xisomab | Binds Factor XI and blocks activation by Factor XIIa | 50 | Phase II trial examining the efficacy of xisomab as measured by incidence of catheter associated thrombosis in individuals with a central venous catheter | No results currently |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, A.; Ha, N.B.; Barnes, G.D. Choice and Duration of Anticoagulation for Venous Thromboembolism. J. Clin. Med. 2024, 13, 301. https://doi.org/10.3390/jcm13010301
Malik A, Ha NB, Barnes GD. Choice and Duration of Anticoagulation for Venous Thromboembolism. Journal of Clinical Medicine. 2024; 13(1):301. https://doi.org/10.3390/jcm13010301
Chicago/Turabian StyleMalik, Aroosa, Nghi B. Ha, and Geoffrey D. Barnes. 2024. "Choice and Duration of Anticoagulation for Venous Thromboembolism" Journal of Clinical Medicine 13, no. 1: 301. https://doi.org/10.3390/jcm13010301
APA StyleMalik, A., Ha, N. B., & Barnes, G. D. (2024). Choice and Duration of Anticoagulation for Venous Thromboembolism. Journal of Clinical Medicine, 13(1), 301. https://doi.org/10.3390/jcm13010301