Anatomical and Functional Outcomes with Prompt versus Delayed Initiation of Anti-VEGF in Exudative Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Clinical Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-Related Macular Degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Klaver, C.C.W.; Wolfs, R.C.W.; Vingerling, J.R.; Hofman, A.; De Jong, P.T.V.M. Age-Specific Prevalence and Causes of Blindness and Visual Impairment in an Older Population: The Rotterdam Study. Arch. Ophthalmol. 1998, 116, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Ambati, B.K.; Yoo, S.H.; Ianchulev, S.; Adamis, A.P. Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies. Surv. Ophthalmol. 2003, 48, 257–293. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.B.; Hawkins, B.S.; Jefferys, J.L.; Bressler, N.M.; Bressler, S.B.; Hiner, C.J.; Javornik, N.B.; Orth, D.H.; Wilkinson, C.P. MPSG Five-Year Follow-up of Fellow Eyes of Patients with Age-Related Macular Degeneration and Unilateral Extrafoveal Choroidal Neovascularization. Arch. Ophthalmol. 1993, 111, 1189–1199. [Google Scholar] [CrossRef]
- Barouch, F.C.; Miller, J.W. Anti-Vascular Endothelial Growth Factor Strategies for the Treatment of Choroidal Neovascularization from Age-Related Macular Degeneration. Int. Ophthalmol. Clin. 2004, 44, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Arias, L.; Armadá, F.; Donate, J.; García-Arumí, J.; Giralt, J.; Pazos, B.; Pĩero, A.; Martínez, F.; Mondéjar, J.J.; Ortega, I.; et al. Delay in Treating Age-Related Macular Degeneration in Spain Is Associated with Progressive Vision Loss. Eye 2009, 23, 326–333. [Google Scholar] [CrossRef]
- Bonastre, J.; Le Pen, C.; Soubrane, G.; Quentel, G. The Burden of Age-Related Macular Degeneration: Results of a Cohort Study in Two French Referral Centres. Pharmacoeconomics 2003, 21, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Lotery, A.; Xu, X.; Zlatava, G.; Loftus, J. Burden of Illness, Visual Impairment and Health Resource Utilisation of Patients with Neovascular Age-Related Macular Degeneration: Results from the UK Cohort of a Five-Country Cross-Sectional Study. Br. J. Ophthalmol. 2007, 91, 1303–1307. [Google Scholar] [CrossRef]
- Weingessel, B.; Hintermayer, G.; MacA, S.M.; Rauch, R.; Vecsei-Marlovits, P.V. The Significance of Early Treatment of Exudative Age-Related Macular Degeneration: 12 Months’ Results. Wien. Klin. Wochenschr. 2012, 124, 750–755. [Google Scholar] [CrossRef]
- Muether, P.S.; Hermann, M.M.; Koch, K.; Fauser, S. Delay between Medical Indication to Anti-VEGF Treatment in Age-Related Macular Degeneration Can Result in a Loss of Visual Acuity. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 633–637. [Google Scholar] [CrossRef]
- Sim, P.Y.; Gajree, S.; Dhillon, B.; Borooah, S. Investigation of Time to First Presentation and Extrahospital Factors in the Treatment of Neovascular Age-Related Macular Degeneration: A Retrospective Cross-Sectional Study. BMJ Open 2017, 7, e017771. [Google Scholar] [CrossRef]
- Rauch, R.; Weingessel, B.; MacA, S.M.; Vecsei-Marlovits, P.V. Time to First Treatment: The Significance of Early Treatment of Exudative Age-Related Macular Degeneration. Retina 2012, 32, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Algvere, P.V.; Steén, B.; Seregard, S.; Kvanta, A. A Prospective Study on Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration of Different Durations. Acta Ophthalmol. 2008, 86, 482–489. [Google Scholar] [CrossRef]
- Solomon, S.D.; Lindsley, K.B.; Krzystolik, M.G.; Vedula, S.S.; Hawkins, B.S. Intravitreal Bevacizumab Versus Ranibizumab for Treatment of Neovascular Age-Related Macular Degeneration: Findings from a Cochrane Systematic Review. Ophthalmology 2016, 123, 70–77.e1. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Hadzalic, E.; Gjertsen, I.; Forsaa, V.; Berger, L.H.; Kinge, B.; Henschien, H.; Fossen, K.; Markovic, S.; Pedersen, T.R.; et al. Ranibizumab or Bevacizumab for Neovascular Age-Related Macular Degeneration According to the Lucentis Compared to Avastin Study Treat-and-Extend Protocol. Ophthalmology 2016, 123, 51–59. [Google Scholar] [CrossRef] [PubMed]
- DF, M.; MG, M.; GS, Y.; JE, G.; SL, F.; GJ, J. Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar] [CrossRef]
- Takahashi, H.; Ohkubo, Y.; Sato, A.; Takezawa, M.; Fujino, Y.; Yanagi, Y.; Kawashima, H. Relationship between Visual Prognosis and Delay of Intravitreal Injection of Ranibizumab When Treating Age-Related Macular Degeneration. Retina 2015, 35, 1331–1338. [Google Scholar] [CrossRef]
- Oliver-Fernandez, A.; Bakal, J.; Segal, S.; Shah, G.K.; Dugar, A.; Sharma, S. Progression of Visual Loss and Time between Initial Assessment and Treatment of Wet Age-Related Macular Degeneration. Can. J. Ophthalmol. 2005, 40, 313–319. [Google Scholar] [CrossRef]
- Klein, M.L.; Jorizzo, P.A.; Watzke, R.C. Growth Features of Choroidal Neovascular Membranes in Age-Related Macular Degeneration. Ophthalmology 1989, 96, 1416–1421. [Google Scholar] [CrossRef]
- Vander, J.F.; Morgan, C.M.; Schatz, H. Growth Rate of Subretinal Neovascularization in Age-Related Macular Degeneration. Ophthalmology 1989, 96, 1422–1429. [Google Scholar] [CrossRef]
- Lim, J.H.; Wickremasinghe, S.S.; Xie, J.; Chauhan, D.S.; Baird, P.N.; Robman, L.D.; Hageman, G.; Guymer, R.H. Delay to Treatment and Visual Outcomes in Patients Treated with Anti-Vascular Endothelial Growth Factor for Age-Related Macular Degeneration. Am. J. Ophthalmol. 2012, 153, 678–686.e2. [Google Scholar] [CrossRef] [PubMed]
- Wasser, L.M.; Weill, Y.; Brosh, K.; Magal, I.; Potter, M.; Strassman, I.; Gelman, E.; Koslowsky, M.; Zadok, D.; Hanhart, J. The Impact of COVID-19 on Intravitreal Injection Compliance. SN Compr. Clin. Med. 2020, 2, 2546–2549. [Google Scholar] [CrossRef] [PubMed]
- dell’Omo, R.; Filippelli, M.; Virgili, G.; Bandello, F.; Querques, G.; Lanzetta, P.; Avitabile, T.; Viola, F.; Reibaldi, M.; Semeraro, F.; et al. Effect of COVID-19-Related Lockdown on Ophthalmic Practice in Italy: A Report from 39 Institutional Centers. Eur. J. Ophthalmol. 2022, 32, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, A.; Giannaccare, G.; Gatti, V.; Scuteri, G.; Randazzo, G.; Scorcia, V. Intravitreal Injections during COVID-19 Outbreak: Real-World Experience from an Italian Tertiary Referral Center. Eur. J. Ophthalmol. 2021, 31, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, U.; Williams, M.; Amoaku, W.; Bailey, C.; Bishop, P.; Brand, C.; Chong, V.; Downes, S.; Evans, J.; Lotery, A.; et al. The Royal College of Ophthalmologists Guidelines on AMD: Executive Summary. Eye 2013, 27, 1429. [Google Scholar] [CrossRef] [PubMed]
- Beykin, G.; Grunin, M.; Averbukh, E.; Banin, E.; Hemo, Y.; Chowers, I. Bevacizumab Treatment for Neovascular Age-Related Macular Degeneration in the Setting of a Clinic: “Real Life” Long-Term Outcome. BMC Ophthalmol. 2015, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Souka, A.; Adelman, R.A. Age-Related Macular Degeneration: Using Morphological Predictors to Modify Current Treatment Protocols. Acta Ophthalmol. 2018, 96, 120–133. [Google Scholar] [CrossRef]
- Raja, M.S.; Goldsmith, C.; Burton, B.J.L. Intraocular Inflammation with Intravitreal Bevacizumab (Avastin). Br. J. Ophthalmol. 2010, 94, 525. [Google Scholar] [CrossRef]
- Georgopoulos, M.; Polak, K.; Prager, F.; Prünte, C.; Schmidt-Erfurth, U. Characteristics of Severe Intraocular Inflammation Following Intravitreal Injection of Bevacizumab (Avastin). Br. J. Ophthalmol. 2009, 93, 457–462. [Google Scholar] [CrossRef]
- Mérida, S.; Sancho-Tello, M.; Almansa, I.; Desco, C.; Peris, C.; Moreno, M.L.; Villar, V.M.; Navea, A.; Bosch-Morell, F. Bevacizumab Diminishes Inflammation in an Acute Endotoxin-Induced Uveitis Model. Front. Pharmacol. 2018, 9, 649. [Google Scholar] [CrossRef]
- EL-Hajjar, L.; Jalaleddine, N.; Shaito, A.; Zibara, K.; Kazan, J.M.; El-Saghir, J.; El-Sabban, M. Bevacizumab Induces Inflammation in MDA-MB-231 Breast Cancer Cell Line and in a Mouse Model. Cell Signal. 2019, 53, 400–412. [Google Scholar] [CrossRef] [PubMed]
Prompt Anti-VEGF N = 68 | Intermediate Anti-VEGF N = 31 | Delayed Anti-VEGF N = 47 | p = | |
---|---|---|---|---|
Age (years) at diagnosis | 81.1 ± 7.3 | 81.0 ± 7.7 | 77.5 ± 8.8 | 0.041 |
Male:Female (n/%) | 28:40 (41:59%) | 15:16 (48:52%) | 19:28 (43:57%) | 0.752 |
Laterality (right:left) | 32:36 (47:53%) | 16:15 (52:48%) | 25:22 (53:47%) | 0.795 |
Lens status (phakic:pseudophakic) | 23:45 (34:66%) | 13:18 (42:58%) | 19:28 (40:60%) | 0.561 |
Comorbidities | ||||
Diabetes | 15 (22%) | 8 (26%) | 11 (23%) | 0.916 |
Glaucoma | 6 (9%) | 4 (13%) | 5 (11%) | 0.845 |
Hypertension | 49 (72%) | 22 (71%) | 29 (62%) | 0.441 |
Ischemic heart disease | 17 (25%) | 9 (29%) | 8 (17%) | 0.438 |
Macular status | ||||
Fibrosis | 10% | 3% | 15% | 0.197 |
IRF | 74% | 71% | 64% | 0.369 |
PED | 40% | 42% | 43% | 0.984 |
SRF | 91% | 87% | 75% | 0.366 |
Subretinal hemorrhage | 47% | 39% | 15% | 0.002 |
CNV type | ||||
Type 1 | 96% | 97% | 96% | 0.960 |
Type 2 | 4% | 3% | 4% | |
Treatment regimen | ||||
PRN | 60% | 52% | 62% | 0.821 |
T&E | 40% | 48% | 38% |
Prompt Anti-VEGF N = 68 | Intermediate Anti-VEGF N = 31 | Delayed Anti-VEGF N = 47 | p = | |
---|---|---|---|---|
CSMT (µm) | ||||
Pre | 479.7 ± 163.3 | 527.3 ± 214.0 | 424.1 ± 149.0 | 0.032 |
After anti-VEGF induction phase * | 328.0 ± 115.4 | 364.6 ± 127.2 | 337.7 ± 150.1 | 0.432 |
At 1 year | 339.4 ± 163.9 | 351.2 ± 120.8 | 335.3 ± 124.1 | 0.898 |
At 2 years | 335.6 ± 117.6 | 348.6 ± 138.3 | 323.9 ± 124.3 | 0.732 |
BCVA (LogMAR) | ||||
Pre | 0.59 ± 0.45 | 0.75 ± 0.57 | 0.59 ± 0.50 | 0.453 |
After anti-VEGF induction phase * | 0.47 ± 0.38 | 0.59 ± 0.48 | 0.47 ± 0.44 | 0.458 |
At 1 year | 0.54 ± 0.51 | 0.62 ± 0.44 | 0.52 ± 0.47 | 0.449 |
At 2 years | 0.63 ± 0.54 | 0.65 ± 0.54 | 0.54 ± 0.46 | 0.536 |
Prompt Anti-VEGF N = 68 | Intermediate Anti-VEGF N = 31 | Delayed Anti-VEGF N = 47 | p = | |
---|---|---|---|---|
Macular status after induction | ||||
IRF | 41% | 39% | 38% | 0.914 |
PED | 37% | 45% | 28% | 0.439 |
SRF | 46% | 48% | 47% | 0.669 |
Macular status at 1 year | ||||
IRF | 22% | 26% | 26% | 0.936 |
PED | 29% | 36% | 45% | 0.380 |
SRF | 25% | 29% | 28% | 0.941 |
Macular status at 2 years | ||||
IRF | 31% | 39% | 28% | 0.707 |
PED | 41% | 45% | 49% | 0.680 |
SRF | 28% | 39% | 26% | 0.688 |
Time from wAMD Diagnosis (days) | ||
---|---|---|
R = | p = | |
CSMT (µm) | ||
After anti-VEGF induction * | 0.007 | 0.934 |
Δ from baseline | 0.160 | 0.054 |
At 1 year | 0.070 | 0.428 |
Δ from baseline | 0.052 | 0.558 |
At 2 years | 0.064 | 0.498 |
Δ from baseline | 0.073 | 0.436 |
BCVA (LogMAR) | ||
After anti-VEGF induction * | 0.017 | 0.836 |
Δ from baseline | 0.101 | 0.227 |
At 1 year | 0.004 | 0.965 |
Δ from baseline | 0.051 | 0.553 |
At 2 years | 0.030 | 0.741 |
Δ from baseline | 0.014 (4.3%) | 0.877 |
Prompt Anti-VEGF N = 68 | Intermediate Anti-VEGF N = 31 | Delayed Anti-VEGF N = 47 | p = | |
---|---|---|---|---|
Dropout during follow-up (N/%) | 6 (9%) | 3 (10%) | 6 (13%) | 0.785 |
Anti-VEGF switch (ranibizumab/aflibercept) | ||||
At 1 year | 14% | 7% | 19% | 0.358 |
At 2 years | 23% | 25% | 24% | 0.961 |
Anti-VEGF treatment interval (weeks) * | ||||
At 1 year | 6.85 ± 1.19 | 6.80 ± 1.26 | 6.78 ± 1.21 | 0.978 |
At 2 years | 7.52 ± 1.50 | 7.73 ± 1.94 | 7.04 ± 2.23 | 0.462 |
Cumulative number of anti-VEGF injections | ||||
At 1st year (after induction phase) | 5.03 ± 1.77 | 5.19 ± 1.59 | 5.08 ± 1.67 | 0.928 |
At 2nd year | 5.88 ± 2.77 | 4.68 ± 2.58 | 5.53 ± 2.79 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gershoni, A.; Barayev, E.; Daood, R.H.; Yogev, M.; Gal-Or, O.; Reitblat, O.; Tsessler, M.; Schaap Fogler, M.; Tuuminen, R.; Ehrlich, R. Anatomical and Functional Outcomes with Prompt versus Delayed Initiation of Anti-VEGF in Exudative Age-Related Macular Degeneration. J. Clin. Med. 2024, 13, 111. https://doi.org/10.3390/jcm13010111
Gershoni A, Barayev E, Daood RH, Yogev M, Gal-Or O, Reitblat O, Tsessler M, Schaap Fogler M, Tuuminen R, Ehrlich R. Anatomical and Functional Outcomes with Prompt versus Delayed Initiation of Anti-VEGF in Exudative Age-Related Macular Degeneration. Journal of Clinical Medicine. 2024; 13(1):111. https://doi.org/10.3390/jcm13010111
Chicago/Turabian StyleGershoni, Assaf, Edward Barayev, Rabeea H. Daood, Maureen Yogev, Orly Gal-Or, Olga Reitblat, Maria Tsessler, Michal Schaap Fogler, Raimo Tuuminen, and Rita Ehrlich. 2024. "Anatomical and Functional Outcomes with Prompt versus Delayed Initiation of Anti-VEGF in Exudative Age-Related Macular Degeneration" Journal of Clinical Medicine 13, no. 1: 111. https://doi.org/10.3390/jcm13010111