Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data
2.2. SDCT Scan Technique
2.3. Image Analysis
2.4. TK1 and TAP Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bongiolatti, S.; Corzani, R.; Borgianni, S.; Meniconi, F.; Cipollini, F.; Gonfiotti, A.; Viggiano, D.; Paladini, P.; Voltolini, L. Long-term results after surgical treatment of the dominant lung adenocarcinoma associated with ground-glass opacities. J. Thorac. Dis. 2018, 10, 4838–4848. [Google Scholar] [CrossRef]
- Zhang, Y.; Jheon, S.; Li, H.; Zhang, H.; Xie, Y.; Qian, B.; Lin, K.; Wang, S.; Fu, C.; Hu, H.; et al. Results of low-dose computed tomography as a regular health examination among Chinese hospital employees. J. Thorac. Cardiovasc. Surg. 2019, 160, 824–831.e4. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Yu, G.; Yu, J. Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis. Thorac. Cancer 2018, 9, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laukamp, K.R.; Gupta, A.; Hokamp, N.G.; Obmann, V.C.; Graner, F.P.; Ho, V.; Ros, P.; Ramaiya, N.; Gilkeson, R. Role of spectral-detector CT in reduction of artifacts from contrast media in axillary and subclavian veins: Single institution study in 50 patients. Acta Radiol. 2019, 61, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Große Hokamp, N.; Gilkeson, R.; Jordan, M.K.; Laukamp, K.R.; Neuhaus, V.-F.; Haneder, S.; Halliburton, S.S.; Gupta, A. Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: Unaltered attenuation characteristics with reduced image noise. Eur. J. Radiol. 2019, 117, 49–55. [Google Scholar] [CrossRef]
- Do, T.D.; Rheinheimer, S.; Kauczor, H.-U.; Stiller, W.; Weber, T.; Skornitzke, S. Image quality evaluation of dual-layer spectral CT in comparison to single-layer CT in a reduced-dose setting. Eur. Radiol. 2020, 30, 5709–5719. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, Y.; Chen, X.; Zhang, Y.; Zhang, F.; Li, X.; Zhao, X.; Cheng, J.; Wu, H. Dual-layer spectral detector CT: Predicting the invasiveness of pure ground-glass adenocarcinoma. Clin. Radiol. 2022, 77, e458–e465. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2021, 17, 362–387. [Google Scholar] [CrossRef]
- Aufderklamm, S.; Todenhöfer, T.; Gakis, G.; Kruck, S.; Hennenlotter, J.; Stenzl, A.; Schwentner, C. Thymidine kinase and cancer monitoring. Cancer Lett. 2012, 316, 6–10. [Google Scholar] [CrossRef]
- Lou, X.; Zhou, J.; Ma, H.; Xu, S.; He, E.; Skog, S.; Wang, H. The Half-Life of Serum Thymidine Kinase 1 Concentration Is an Important Tool for Monitoring Surgical Response in Patients with Lung Cancer: A Meta-Analysis. Genet. Test. Mol. Biomarkers 2017, 21, 471–478. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Wang, M.; Xu, J.L. Thymidine kinase 1 combined with CEA, CYFRA21-1 and NSE improved its diagnostic value for lung cancer. Life Sci. 2018, 194, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Dan, B.; Dai, H.; Zhu, M. Clinical application of serum tumor abnormal protein combined with tumor markers in lung cancer patients. Future Oncol. 2022, 18, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, G.; Fu, Z.; Jiang, Z.; Qiu, J. Predicting Pathological Invasiveness of Lung Adenocarcinoma Manifesting as GGO-Predominant Nodules: A Combined Prediction Model Generated From DECT. Acad. Radiol. 2021, 28, 509–516. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, F.; Kang, S.; Tuo, X.; Zhang, X.; Han, D. Dual-layer spectral detector CT (SDCT) can improve the detection of mixed ground-glass lung nodules. J. Cancer Res. Clin. Oncol. 2023, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, W.; Park, S.-J.; Lee, Y.H.; Hwang, S.H.; Yong, H.S.; Oh, Y.-W.; Kang, E.-Y.; Lee, K.Y. Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging. Korean J. Radiol. 2020, 21, 838–850. [Google Scholar] [CrossRef]
- Daoud, B.; Cazejust, J.; Tavolaro, S.; Durand, S.; Pommier, R.; Hamrouni, A.; Bornet, G. Could Spectral CT Have a Potential Benefit in Coronavirus Disease (COVID-19)? AJR Am. J. Roentgenol. 2021, 216, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Peng, X.; Shan, F.; Feng, M.; Shi, Y.; Liu, L.; Zhang, Z. Attenuation and Morphologic Characteristics Distinguishing a Ground-Glass Nodule Measuring 5–10 mm in Diameter as Invasive Lung Adenocarcinoma on Thin-Slice CT. AJR Am. J. Roentgenol. 2019, 213, W162–W170. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cheng, J.-J.; Li, J.-Y.; Zhang, Y.; Lin, L.-Y.; Zhang, F.; Xu, J.-R.; Zhao, X.-J.; Wu, H.-W. Determining the invasiveness of pure ground-glass nodules using dual-energy spectral computed tomography. Transl. Lung Cancer Res. 2020, 9, 484–495. [Google Scholar] [CrossRef]
- Lv, Y.; Ye, J.; Yin, Y.; Ling, J.; Pan, X. A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules. Clin. Radiol. 2022, 77, e741–e748. [Google Scholar] [CrossRef]
- Succony, L.; Rassl, D.; Barker, A.; McCaughan, F.; Rintoul, R. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev. 2021, 99, 102237. [Google Scholar] [CrossRef]
- Wang, X.-W.; Chen, W.-F.; He, W.-J.; Yang, Z.-M.; Li, M.; Xiao, L.; Hua, Y.-Q. CT features differentiating pre- and minimally invasive from invasive adenocarcinoma appearing as mixed ground-glass nodules: Mass is a potential imaging biomarker. Clin. Radiol. 2018, 73, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Oikado, K.; Sato, Y.; Hashimoto, K.; Ichinose, J.; Matsuura, Y.; Okumura, S.; Ninomiya, H.; Mun, M. Prognostic Stratification According to Size and Dominance of Radiologic Solid Component in Clinical Stage IA Lung Adenocarcinoma. JTO Clin. Res. Rep. 2022, 3, 100279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, J.; Xu, J.; Cheng, J.; Wu, H. Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for pre-dicting invasive adenocarcinoma: Comparing with conventional thin-section CT imaging. J. Thorac. Dis. 2017, 9, 4967–4978. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Values (n = 238) |
---|---|
Age, range (median) | 24–79 (58) |
Sex, n (%) | |
Female | 139 (58.40%) |
Male | 99 (41.60%) |
Smoking, n (%) | |
Non-smoker | 147 (67.23%) |
Smoker | 35 (32.77%) |
GGN type, n (%) | |
pGGN | 143 (60.08%) |
mGGN | 95 (39.92%) |
GGN location, n (%) | |
RUL | 91 (38.24%) |
RML | 12 (5.04%) |
RLL | 41 (17.23%) |
LUL | 57 (23.95%) |
LLL | 37 (15.55%) |
Histological types, n (%) | |
AAH | 41 (17.23%) |
AIS | 62 (26.05%) |
MIA | 49 (20.59%) |
IAC | 86 (36.13%) |
Parameter | Precursor Glandular Lesions (n = 103) | Adenocarcinoma (n = 135) | p Value | |||||
---|---|---|---|---|---|---|---|---|
AAH (n = 41) + AIS (n = 62) | MIA (n = 49) | IAC (n = 86) | Pa | Pb | Pc | |||
Sex | female | 54 | 30 | 55 | 0.251 | 0.31 | 0.111 | 0.753 |
male | 49 | 19 | 31 | |||||
Age | 55.03 ± 11.03 | 58.41 ± 10.95 | 60.23 ± 9.44 | 0.003 | 0.064 | <0.001 | 0.331 | |
Smoking status | non-smoker | 57 | 43 | 60 | <0.001 | <0.001 | 0.043 | 0.019 |
smoker | 46 | 6 | 26 | |||||
pGGN | 85 | 28 | 30 | <0.001 | <0.001 | <0.001 | 0.012 | |
mGGN | 18 | 21 | 56 | <0.001 | <0.001 | <0.001 | 0.012 | |
CT value | −550.00 ± 127.19 | −427.00 ± 151.71 | −257.55 (−408.50–121.20) | <0.001 | <0.001 | <0.001 | <0.001 | |
CT40 keVa | −440.20 (−530.70–370.45) | −328.37 ± 170.78 | −191.26 ± 214.39 | <0.001 | <0.001 | <0.001 | <0.001 | |
CT100 keVa | −583.80 (−656.25–508.42) | −453.23 ± 151.20 | −310.05 (−436.40–149.30) | <0.001 | <0.001 | <0.001 | <0.001 | |
λHUa | 2.07 (1.62–2.69) | 2.08 ± 0.75 | 2.06 (1.42–2.54) | 0.641 | 0.463 | 0.409 | 0.965 | |
NICa | 0.16 ± 0.06 | 0.17 ± 0.06 | 0.19 ± 0.07 | 0.029 | 0.262 | 0.007 | 0.257 | |
Zeff (a) | 9.52 ± 0.59 | 8.80 ± 0.47 | 8.49 ± 0.35 | <0.001 | <0.001 | <0.001 | <0.001 | |
EDW (a) | 36.89 ± 11.10 | 47.46 ± 12.94 | 62.36 ± 17.38 | <0.001 | <0.001 | <0.001 | <0.001 | |
CT40 keVv | −478.70 (−563.00–401.20) | −349.56 ± 172.97 | −201.45 (−344.70–36.40) | <0.001 | 0.003 | <0.001 | <0.001 | |
CT100 keVv | −569.2 (−643.07–505.00) | −454.89 ± 154.69 | −326.06 ± 186.29 | <0.001 | <0.001 | <0.001 | <0.001 | |
λHUv | 1.62 (1.25, 2.15) | 1.76 ± 0.62 | 1.81 ± 0.76 | 0.469 | 0.586 | 0.227 | 0.602 | |
NICv | 0.32 ± 0.13 | 0.31 ± 0.09 | 0.33 ± 0.11 | 0.371 | 0.842 | 0.252 | 0.189 | |
Zeff (v) | 9.17 ± 0.48 | 8.72 ± 0.46 | 8.46 ± 0.36 | <0.001 | <0.001 | <0.001 | <0.001 | |
EDW (v) | 36.70 (30.35, 44.60) | 49.26 ± 13.38 | 64.21 ± 17.45 | <0.001 | <0.001 | <0.001 | <0.001 | |
Enhancement difference value (EDV) | 1.27 ± 1.08 | 0.97 ± 0.88 | 0.88 ± 0.59 | 0.032 | 0.316 | 0.201 | 0.994 | |
Daverage (mm) | 10.00 (8.07, 13.27) | 11.40 (9.38, 14.71) | 17.96 ± 6.17 | <0.001 | 0.034 | <0.001 | <0.001 | |
Dsolid (mm) | 0.57 ± 0.15 | 3.67 ± 2.09 | 5.05 ± 0.56 | <0.001 | 0.006 | <0.001 | 0.004 | |
Margin | Spiculated/lobulated | 41 | 18 | 58 | <0.001 | 0.464 | <0.001 | 0.002 |
Internal vascular morphology | Distorted/dilated/cut off | 24 | 15 | 48 | <0.001 | 0.119 | <0.001 | 0.003 |
Internal bronchial morphology | Distorted/thickened/stiff | 11 | 13 | 38 | <0.001 | <0.001 | <0.001 | 0.024 |
Pleural indentation | Present | 19 | 15 | 44 | <0.001 | 0.062 | <0.001 | 0.054 |
TK1 | 0.27 (0.14, 0.51) | 0.80 (0.22, 1.98) | 1.04 (0.34, 1.91) | <0.001 | <0.001 | <0.001 | 0.359 | |
TAP | 103.72 ± 26.99 | 120.76 ± 30.23 | 126.62 (101.09, 139.40) | <0.001 | <0.001 | <0.001 | 0.934 |
Parameters | Estimate | Std. Error | Wald | p Value |
---|---|---|---|---|
Daverage | 0.115 | 0.04 | 8.117 | 0.004 |
Dsolid | 0.014 | 0.071 | 0.041 | 0.840 |
CT100 keV (a) | 0.000 | 0.004 | 0.015 | 0.902 |
λHU (a) | −0.042 | 0.164 | 0.065 | 0.799 |
NIC (a) | −3.953 | 5.157 | 0.588 | 0.443 |
Zeff (a) | −2.458 | 0.534 | 21.184 | <0.001 |
EDW (a) | 0.977 | 0.513 | 3.619 | 0.046 |
CT100 kev (v) | −0.002 | 0.004 | 0.292 | 0.589 |
λHU (v) | 0.011 | 0.255 | 0.002 | 0.966 |
NIC (v) | −1.364 | 2.989 | 0.208 | 0.648 |
Zeff (v) | 0.427 | 0.589 | 0.526 | 0.468 |
Enhancement difference value (EDV) | −0.746 | 0.393 | 3.597 | 0.058 |
EDW (v) | 0.033 | 0.072 | 0.211 | 0.646 |
TAP | 0.007 | 0.006 | 1.223 | 0.269 |
TK1 | 0.606 | 0.185 | 10.708 | 0.001 |
Margin | −0.230 | 0.499 | 0.213 | 0.645 |
Internal vascular morphology | 0.210 | 0.489 | 0.184 | 0.668 |
Internal bronchial morphology | −1.142 | 0.505 | 5.106 | 0.024 |
Pleural indentation | 0.077 | 0.073 | 1.114 | 0.057 |
Parameters | AUC (95%CI) | Youden Index | Threshold | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
CT Value | 0.816 (0.760–0.863) | 0.553 | >−495.2 | 71.85 | 83.5 |
CT40 keVa | 0.769 (0.710–0.821) | 0.492 | >−367.6 | 72.59 | 76.7 |
CT100 keVa | 0.819 (0.764–0.865) | 0.568 | >−458.6 | 73.33 | 83.5 |
λHUa | 0.536 (0.470–0.600) | 0.096 | ≤1.49 | 25.19 | 84.47 |
NICa | 0.592 (0.527–0.655) | 0.184 | >0.21 | 31.11 | 87.38 |
Zeff (a) | 0.896 (0.850–0.932) | 0.667 | ≤9.04 | 88.15 | 78.64 |
EDW (a) | 0.838 (0.785–0.882) | 0.559 | >47.6 | 66.67 | 89.32 |
CT40 keVv | 0.779 (0.721–0.830) | 0.503 | >−404.8 | 75.56 | 74.76 |
CT100 keVv | 0.795 (0.738–0.844) | 0.543 | >−482.5 | 71.85 | 82.52 |
λHUv | 0.542 (0.477–0.607) | 0.159 | >1.63 | 64.44 | 51.46 |
NICv | 0.528 (0.462–0.593) | 0.133 | >0.31 | 57.04 | 56.31 |
Zeff (v) | 0.833 (0.779–0.878) | 0.518 | ≤8.87 | 78.36 | 73.53 |
EDW (v) | 0.833 (0.779–0.878) | 0.553 | >45.9 | 71.85 | 83.5 |
Enhancement difference value (EDV) | 0.553 (0.487–0.617) | 0.125 | ≤1.83 | 94.07 | 18.45 |
Daverage | 0.739 (0.678–0.793) | 0.386 | >11.05 | 75.56 | 63.11 |
Dsolid | 0.691 (0.628–0.749) | 0.376 | >3.86 | 44.44 | 93.2 |
Margin | 0.629 (0.564–0.690) | 0.257 | Spiculated/lobulated | 70.37 | 55.34 |
Internal vascular morphology | 0.648 (0.584–0.709) | 0.296 | Distorted/dilated/cut off | 57.78 | 71.84 |
Internal bronchial morphology | 0.685 (0.622–0.744) | 0.370 | Distorted/thickened/stiff | 49.63 | 87.38 |
Pleural_indentation | 0.651 (0.587–0.712) | 0.302 | Present | 52.59 | 77.67 |
TK1 | 0.733 (0.672–0.788) | 0.453 | >0.87 | 57.04 | 88.35 |
TAP | 0.679 (0.616–0.738) | 0.303 | >103.21 | 74.07 | 56.31 |
AUC (95%CI) | Sensitivity (%) | Specificity (%) | Hosmer–Lemeshow | |||
---|---|---|---|---|---|---|
χ2 | p Value | |||||
Model 1 | 0.919 (0.877–0.950) | 91.110 | 87.38 | 8.270 | 0.408 | Z = 2.542, p = 0.011 |
Model 2 | 0.933 (0.894–0.961) | 88.890 | 88.89 | 2.746 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yue, Y.; Fan, Z.; Jia, Z.; Yu, X.; Liu, C.; Hou, Y. Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1. J. Clin. Med. 2023, 12, 1107. https://doi.org/10.3390/jcm12031107
Wang T, Yue Y, Fan Z, Jia Z, Yu X, Liu C, Hou Y. Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1. Journal of Clinical Medicine. 2023; 12(3):1107. https://doi.org/10.3390/jcm12031107
Chicago/Turabian StyleWang, Tong, Yong Yue, Zheng Fan, Zheng Jia, Xiuze Yu, Chen Liu, and Yang Hou. 2023. "Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1" Journal of Clinical Medicine 12, no. 3: 1107. https://doi.org/10.3390/jcm12031107
APA StyleWang, T., Yue, Y., Fan, Z., Jia, Z., Yu, X., Liu, C., & Hou, Y. (2023). Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1. Journal of Clinical Medicine, 12(3), 1107. https://doi.org/10.3390/jcm12031107