The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Classification of Tumors Editorial Board. Tumours of the uterine corpus. In Female Genital Tumors, 5th ed.; IARC: Lyon, France, 2020; pp. 247, 280. [Google Scholar]
- Croce, S.; Ribeiro, A.; Brulard, C.; Noel, J.C.; Amant, F.; Stoeckle, E.; Devouassoux-Shisheborah, M.; Floquet, A.; Arnould, L.; Guyon, F.; et al. Uterine smooth muscle tumor analysis by comparative genomic hybridization: A useful diagnostic tool in challenging lesions. Mod. Pathol. 2015, 28, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, A.; Trivedi, R.; Lin, S.Y. Tumor microenvironment: Barrier or opportunity towards effective cancer therapy. J Biomed. Sci. 2022, 29, 83. [Google Scholar] [CrossRef] [PubMed]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef]
- Bożyk, A.; Wojas-Krawczyk, K.; Krawczyk, P.; Milanowski, J. Tumor Microenvironment-A Short Review of Cellular and Interaction Diversity. Biology 2022, 11, 929. [Google Scholar] [CrossRef]
- Mehta, C.R.; Patel, N.R. IBM SPSS Exact Tests; IBM Corp.: Armonk, NY, USA, 2013; pp. 6, 9, 25. [Google Scholar]
- Oliva, E. Practical issues in uterine pathology from banal to bewildering: The remarkable spectrum of smooth muscle neoplasia. Mod. Pathol. 2016, 29 (Suppl. 1), S104–S120. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.T.; Wong, C.N.; Wong, C.N.; Liu, F.S. Uterine smooth muscle tumor of uncertain malignant potential: A review of current knowledge. Taiwan J. Obstet. Gynecol. 2022, 61, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Ha, C.; Yin, P.; Zhang, Q.; Huang, Y.; Dai, Y.; Bulun, S.E.; Wei, J.J. Leiomyoma with Bizarre Nuclei: A Stagnant Precursor to Leiomyosarcoma? Biomark. J. 2021, 7, 85. [Google Scholar]
- El Hilali, F.; Aalalou, H.; Lemine, M.M.; Saoud, M.K.; Nissrinemamouni, A.; Sanaa Errarhay, S.; Bouchikhi, C.; Banani, A. Mitotically active leiomyomas of the uterus: About two cases. Int. J. Adv. Res. 2021, 9, 143–146. [Google Scholar] [CrossRef]
- Kefeli, M.; Caliskan, S.; Kurtoglu, E.; Yildiz, L.; Kokcu, A. Leiomyoma with Bizarre Nuclei: Clinical and Pathologic Features of 30 Patients. Int. J. Gynecol. Pathol. 2018, 37, 379–387. [Google Scholar] [CrossRef]
- Croce, S.; Young, R.H.; Oliva, E. Uterine leiomyomas with bizarre nuclei: A clinicopathologic study of 59 cases. Am. J. Surg. Pathol. 2014, 38, 1330–1339. [Google Scholar] [CrossRef]
- Ejhaoudani, J.; Yessoufou, M.; Chaara, H.; Melhouf, M.A. Uterine smooth muscle tumors of uncertain malignant potential (STUMP): Management, follow up and prognosis. PAMJ-Clin. Med. 2020, 3, 82. [Google Scholar]
- Yordanov, A.D.; Tantchev, L.; Vasileva, P.; Strashilov, S.; Vasileva-Slaveva, M.; Konsoulova, A. Uterine smooth muscle tumours of uncertain malignant potential: Single-centre experience and review of the literature. Menopause Rev. 2020, 19, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.K.; Kwon, S.H.; Cho, C.H.; Lee, H.W.; Shin, S.J. Giant uterine mass with uterine smooth muscle tumor of uncertain malignant potential: A case report. Gynecol. Oncol. Rep. 2020, 34, 100663. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Stone, R.L.; Fader, A.N. Uterine leiomyosarcoma: Epidemiology, contemporary treatment strategies and the impact of uterine morcellation. Gynecol. Oncol. 2017, 145, 208–216. [Google Scholar] [CrossRef]
- Roberts, M.E.; Aynardi, J.T.; Chu, C.S. Uterine leiomyosarcoma: A review of the literature and update on management options. Gynecol. Oncol. 2018, 151, 562–572. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Zhang, Z.; Jia, J.; Shan, B. Prevalence and occult rates of uterine leiomyosarcoma. Medicine 2020, 99, e21766. [Google Scholar] [CrossRef]
- Villalaín-González, C.; Tejerizo-García, Á.; Lopez-Garcia, P.; López-González, G.; Oliver-Perez, M.R.; Jiménez-López, J.S. Vaginal metastasis as the initial presentation of leiomyosarcoma: A case report. BMC Cancer 2017, 17, 503. [Google Scholar] [CrossRef] [Green Version]
- Byar, K.L.; Fredericks, T. Uterine Leiomyosarcoma. J. Adv. Pract. Oncol. 2022, 13, 70–76. [Google Scholar]
- Suh, D.S.; Kim, Y.H.; Yun, K.Y.; Lee, N.K.; Choi, K.U.; Kim, K.H.; Yoon, M.S. An unusual case of pedunculated subserosal leiomyosarcoma of the uterus mimicking ovarian carcinoma. J. Ovarian Res. 2016, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.; Cunha, T.M. Uterine sarcomas: Clinical presentation and MRI features. Diagn. Interv. Radiol. 2015, 21, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Liegl-Atzwanger, B.; Heitzer, E.; Flicker, K.; Muller, S.; Ulz, P.; Saglam, O.; Tavassoli, F.; Devouassoux-Shisheborah, M.; Geigl, J.; Moinfar, F. Exploring chromosomal abnormalities and genetic changes in uterine smooth muscle tumors. Mod. Pathol. 2016, 29, 1262–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chudasama, P.; Mughal, S.S.; Sanders, M.A.; Hubschmann, D.; Chung, I.; Deeg, K.I.; Wong, S.H.; Rabe, S.; Hlevnjak, M.; Zapatka, M.; et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 2018, 9, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, E.; Piwnica-Worms, D.; Piwnica-Worms, H. Contribution of p53 to Metastasis. Cancer Discov. 2014, 4, 405–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene 2006, 25, 5220–5227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuyoshi, H.; Yoshida, Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci. 2018, 109, 1743–1752. [Google Scholar] [CrossRef]
- Choi, J.; Manzano, A.; Dong, W.; Bellone, S.; Zammataro, L.; Yao, X.; Deshpande, A.; Zaidi, S.; Guglielmi, A.; Gnutti, B.; et al. Integrated mutational landscape analysis of uterine leiomyosarcomas. Proc. Natl. Acad. Sci. USA 2021, 118, e2025182118. [Google Scholar] [CrossRef]
- Sparić, R.; Andjić, M.; Babović, I.; Babovic, I.; Nejkovic, L.; Mitrovic, M.; Stulic, J.; Pupovac, M.; Tinelli, A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9728. [Google Scholar] [CrossRef]
- Cetintas, V.B.; Batada, N.N. Is there a causal link between PTEN deficient tumors and immunosuppressive tumor microenvironment? J. Transl. Med. 2020, 18, 45. [Google Scholar] [CrossRef] [Green Version]
- Hendry, S.A.; Farnsworth, R.H.; Solomon, B.; Achen, M.G.; Stacker, S.A.; Fox, S.B. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Front. Immunol. 2016, 7, 621. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu, C.; Lopez-Novoa, J.M.; Quintanilla, M. The emerging role of TGF-β superfamily coreceptors in cancer. Biochim. Biophys. Acta 2009, 1792, 954–973. [Google Scholar] [CrossRef]
- Barnett, J.M.; Suarez, S.; McCollum, G.W.; Penn, J.S. Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Muhl, L.; Burmakin, M.; Wang, Y.; Duchez, A.C.; Betsholtz, C.; Arthur, H.M.; Jakobsson, L. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat. Cell Biol. 2017, 19, 639–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, L.; Lin, Q.; Ren, W.; Xu, G. Prognostic value of endoglin-assessed microvessel density in cancer patients: A systematic review and meta-analysis. Oncotarget 2018, 9, 7660–7671. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Kubota, T.; Takeuchi, H.; Sato, K. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: Comparison with an anti-CD31 monoclonal antibody. Neuropathology 2005, 25, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Ollauri-Ibáñez, C.; Núñez-Gómez, E.; Egido-Turrión, C.; Silva-Sousa, L.; Diaz-Rodriguez, E.; Rodriguez-Barbero, A.; Lopez-Novoa, J.M.; Pericacho, M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020, 23, 231–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Muñoz, T.; Amaral, A.T.; Puerto-Camacho, P.; Peinado, H.; de Álava, E. Endoglin in the Spotlight to Treat Cancer. Int. J. Mol. Sci. 2021, 22, 3186. [Google Scholar] [CrossRef] [PubMed]
- Damerell, V.; Pepper, M.S.; Prince, S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct. Target. Ther. 2021, 6, 246. [Google Scholar] [CrossRef]
- Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Kooshkaki, O.; Derakhshani, A.; Safarpour, H.; Najafi, S.; Vahedi, P.; Brunetti, O.; Torabi, M.; Lotfinejad, P.; Paradiso, A.V.; Racanelli, V.; et al. The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. Int. J. Mol. Sci. 2020, 21, 5034. [Google Scholar] [CrossRef]
- Song, M.; Chen, D.; Lu, B.; Wang, C.; Zhang, J.; Huang, L.; Wang, X.; Timmons, C.L.; Hu, J.; Liu, B.; et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 2013, 8, e65821. [Google Scholar] [CrossRef]
- Lastwika, K.J.; Wilson, W., III; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; et al. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Res. 2016, 76, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ami, E.; Barysauskas, C.M.; Solomon, S.; Tahlil, K.; Malley, R.; Hohos, M.; Polson, K.; Loucks, M.; Severgnini, M.; Patel, T.; et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer 2017, 123, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Shanes, E.D.; Friedman, L.A.; Mills, A.M. PD-L1 Expression and Tumor-infiltrating Lymphocytes in Uterine Smooth Muscle Tumors: Implications for Immunotherapy. Am. J. Surg. Pathol. 2019, 43, 792–801. [Google Scholar] [CrossRef]
- Lau, E.Y.M.; Carroll, E.C.; Callender, L.A.; Hood, G.A.; Berryman, V.; Pattrick, M.; Finer, S.; Hitman, G.A.; Ackland, G.L.; Henson, S.M. Type 2 diabetes is associated with the accumulation of senescent T cells. Clin. Exp. Immunol. 2019, 197, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A.; et al. Dysfunction of CD8 + PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep. 2020, 10, 14928. [Google Scholar] [CrossRef]
- Zhu, B.; Qu, S. The Relationship between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front. Endocrinol. 2022, 13, 800995. [Google Scholar] [CrossRef] [PubMed]
- Febres-Aldana, C.A.; Poppiti, R.; Varlotto, J.M.; Voland, R.; Zalecki, M.; Sharzehi, S.; Rassaei, N. Diabetes mellitus type 2 is associated with increased tumor expression of programmed death-ligand 1 (PD-L1) in surgically resected non-small cell lung cancer—A matched case-control study. Cancer Treat. Res. Commun. 2020, 23, 100170. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. Obstet. 2020, 149, 3–9. [Google Scholar] [CrossRef]
- Hughes, L.; Roex, A.; Parange, A. STUMP, a surprise finding in a large fibroid uterus in a 20-year-old woman. Int. J. Women’s Health 2018, 10, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Ip, P.P.C.; Tse, K.Y.; Tam, K.F. Uterine Smooth Muscle Tumors Other Than the Ordinary Leiomyomas and Leiomyosarcomas: A Review of Selected Variants with Emphasis on Recent Advances and Unusual Morphology That May Cause Concern for Malignancy. Adv. Anat. Pathol. 2010, 17, 91–112. [Google Scholar] [CrossRef]
- O’Neill, C.J.; McBride, H.A.; Connolly, L.E.; McCluggage, W.G. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology 2007, 50, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Vilos, G.A.; Marks, J.; Ettler, H.C.; Vilos, A.G.; Prefontaine, M.; Abu-Rafea, B. Uterine smooth muscle tumors of uncertain malignant potential: Diagnostic challenges and therapeutic dilemmas. Report of 2 cases and review of the literature. J. Minim. Invasive Gynecol. 2012, 19, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ricci, A.D.; Saponara, M.; de Leo, A.; Perrone, A.M.; de Iaco, P.; Pantaleo, M.A.; Nannini, M. Recurrent Uterine Smooth-Muscle Tumors of Uncertain Malignant Potential (STUMP): State of The Art. Anticancer Res. 2020, 40, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Sparic, R.; Mirkovic, L.; Malvasi, A.; Tinelli, A. Epidemiology of uterine myomas: A review. Int. J. Fertil Steril. 2016, 9, 424–435. [Google Scholar] [PubMed]
Antibody (Clone) | Reaction | Quantification |
---|---|---|
p53 (SP5) | Nuclear | Qualitative: present/absent reaction Quantitative: overexpression ≥80% nuclei; null 0%; wild-type 0–80% (patchy distribution) |
RB1 (1F8) | Nuclear | Qualitative: present/absent reaction Quantitative: 10 HPF fields (40×) reported per 1000 nuclei evaluated |
PTEN (6H2.1) | Nuclear | Qualitative: present/absent reaction Quantitative: 10 HPF fields (40×) reported per 1000 nuclei evaluated |
CD8 (SP16) | Membranous | Qualitative: present/absent reaction Quantitative: mean number of T cells/1 mm2 |
PD-L1 (CAL10) | Membranous | Qualitative: present/absent reaction Quantitative: the area occupied by PD-L1-positive lymphocytes relative to the entire tumoral and peritumoral area |
CD105 (3A9) | Membranous | Quantitative: mean number of intratumoral CD105-positive capillaries/1 mm2 |
Leiomyosarcoma | STUMP | Symplastic Leiomyoma | Mitotically Active Leiomyoma | p Value | |
---|---|---|---|---|---|
Age (mean) | 43–75 (54.56) | 43–48 (45) | 33–54 (45) | 41–47 (44.75) | 0.057 |
Symptoms (n/N) | |||||
| 78% (7/9) | 67% (2/3) | 43% (3/7) | 75% (3/4) | 0.572 |
| 67% (6/9) | 0% (0/3) | 86% (6/7) | 50% (2/4) | 0.090 |
| 0% (0/9) | 67% (2/3) | 0% (0/7) | 0% (0/4) | 0.012 |
Debut (n/N) | |||||
| 89% (8/9) | 0% (0/3) | 43% (3/7) | 0% (0/4) | 0.001 |
| 11% (1/9) | 100% (3/3) | 14% (1/7) | 25% (1/4) | |
| 0% (0/9) | 0% (0/3) | 43% (3/7) | 75% (3/4) | |
Hormonal status (n/N) | |||||
| 22% (2/9) | 100% (3/3) | 71% (5/7) | 100% (4/4) | 0.016 |
| 78% (7/9) | 0% (0/3) | 29% (2/7) | 0% (0/4) | |
Comorbidities (n/N) | |||||
| 67% (6/9) | 0% (0/3) | 29% (2/7) | 50% (2/4) | 0.229 |
| 56% (5/9) | 67% (2/3) | 29% (2/7) | 25% (1/4) | 0.554 |
| 22% (2/9) | 0% (0/3) | 0% (0/7) | 25% (1/4) | 0.502 |
| 22% (2/9) | 0% (0/3) | 0% (0/7) | 25% (1/4) | 0.834 |
Parity (n/N) | |||||
| 44% (4/9) | 67% (2/3) | 71% (5/7) | 75% (3/4) | 0.726 |
| 56% (5/9) | 33% (1/3) | 29% (2/7) | 25% (1/4) |
Leiomyosarcoma | STUMP | Symplastic Leiomyoma | Mitotically Active Leiomyoma | p Value | |
---|---|---|---|---|---|
Surgical treatment (n/N) | |||||
| 78% (7/9) | 100% (3/3) | 71% (5/7) | 50% (2/4) | 0.367 |
| 11% (1/9) | 0% (0/3) | 0% (0/7) | 0% (0/4) | |
| 0% (0/9) | 0% (0/3) | 29% (2/7) | 50% (2/4) | |
| 11% (1/9) | 0% (0/3) | 0% (0/7) | 0% (0/4) | |
Location (n/N) | |||||
| 100% (9/9) | 67% (2/3) | 43% (3/7) | 50% (2/4) | 0.014 |
| 0% (0/9) | 0% (0/3) | 57% (4/7) | 25% (1/4) | |
| 0% (0/9) | 33% (1/3) | 0% (0/7) | 25% (1/4) | |
Maximum diameter (cm) | 11.5 | 5.33 | 6.35 | 7.75 | 0.091 |
5.5–28 | 3–7 | 1.5–10 | 5–14 |
Leiomyosarcoma | STUMP | Symplastic Leiomyoma | Mitotically Active Leiomyoma | p Value | |
---|---|---|---|---|---|
Number of mitoses (mean) | 5–35 (15.56) | 5–12 (8.67) | 1–4 (2.43) | 8–15 (11.25) | 0.002 |
Presence of necrosis (n/N) | 89% (8/9) | 33% (1/3) | 0% (0/7) | 0% (0/4) | <0.001 |
Presence of hemorrhage (n/N) | 22% (2/9) | 33% (1/3) | 0% (0/7) | 0% (0/4) | 0.421 |
p53 (n/N) | |||||
| 22% (2/9) | 0% (0/3) | 43% (3/7) | 0% (0/4) | 0.544 |
| 67% (6/9) | 100% (3/3) | 57% (4/7) | 100% (4/4) | |
| 11% (1/9) | 0% (0/3) | 0% (0/7) | 0% (0/4) | |
PTEN+ (n/N) | 11% (1/9) | 0% (0/3) | 43% (3/7) | 100% (4/4) | 0.009 |
PTEN deletion (n/N) | 89% (8/9) | 100% (3/3) | 57% (4/7) | 0% (0/4) | 0.009 |
Rb1+ (n/N) | 44% (4/9) | 100% (3/3) | 29% (2/7) | 100% (4/4) | 0.049 |
Average | 24.44 | 36.67 | 16.43 | 12.5 | 0.545 |
CD8+ | 3–87.89 (30.25) | 0–10.52 (6.84) | 0–23.15 (9.60) | 0–9.47 (5.21) | 0.025 |
PD-L1+ | 0–3% | 0–2% | 0–3% | 0–2% | 0.799 |
Average | 1% | 1% | 1% | 1% | |
Microvascular density (mean) | 2.17–11.26 (6.44) | 5.89–8.42 (6.93) | 0.25–9.04 (3.85) | 0.89–10.51 (5.42) | 0.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosoteanu, M.; Deacu, M.; Aschie, M.; Vamesu, S.; Cozaru, G.C.; Mitroi, A.F.; Voda, R.I.; Orasanu, C.I.; Vlad, S.E.; Penciu, R.C.; et al. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. J. Clin. Med. 2023, 12, 4161. https://doi.org/10.3390/jcm12124161
Bosoteanu M, Deacu M, Aschie M, Vamesu S, Cozaru GC, Mitroi AF, Voda RI, Orasanu CI, Vlad SE, Penciu RC, et al. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. Journal of Clinical Medicine. 2023; 12(12):4161. https://doi.org/10.3390/jcm12124161
Chicago/Turabian StyleBosoteanu, Madalina, Mariana Deacu, Mariana Aschie, Sorin Vamesu, Georgeta Camelia Cozaru, Anca Florentina Mitroi, Raluca Ioana Voda, Cristian Ionut Orasanu, Sabina Elena Vlad, Roxana Cleopatra Penciu, and et al. 2023. "The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors" Journal of Clinical Medicine 12, no. 12: 4161. https://doi.org/10.3390/jcm12124161
APA StyleBosoteanu, M., Deacu, M., Aschie, M., Vamesu, S., Cozaru, G. C., Mitroi, A. F., Voda, R. I., Orasanu, C. I., Vlad, S. E., Penciu, R. C., & Chirila, S. I. (2023). The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. Journal of Clinical Medicine, 12(12), 4161. https://doi.org/10.3390/jcm12124161