CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Pre and Post-Surgical Cognitive Assessment
2.3. Blood and Tissue Sampling and MPO
2.4. Isolation of Mitochondria from Peripheral Blood Mononuclear Cells
2.5. Mitochondrial MT-ND1 Expression by Real-Time PCR
2.6. Complex I Activity Assay
2.7. Adenosine Triphosphate (ATP) Measurement
2.8. Mitochondrial DNA (MtDNA) Copy Number Measurement
2.9. Methylation Analysis
2.10. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Cognitive Testing and Impairment
3.3. Blood DNA Methylation Analysis
3.4. Blood Mitochondrial Functional Assessment
3.5. Cardiac Tissue Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, S.M.; Lin, H. Postoperative Cognitive Dysfunction after Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2019, 34, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Salzwedel, A.; Heidler, M.D.; Haubold, K.; Schikora, M.; Reibis, R.; Wegscheider, K.; Jöbges, M.; Völler, H. Prevalence of mild cognitive impairment in employable patients after acute coronary event in cardiac rehabilitation. Vasc. Health Risk Manag. 2017, 13, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokzijl, F.; Houterman, S.; van Straten, B.H.M.; Daeter, E.; Brandon Bravo Bruinsma, G.J.; Dieperink, W.; Reneman, M.F.; Keus, F.; van der Horst, I.C.C.; Mariani, M.A. Quality of life after coronary bypass: A multicentre study of routinely collected health data in the Netherlands. Eur. J. Cardio-Thorac. Surg. 2019, 56, 526–533. [Google Scholar] [CrossRef]
- Stein, A.; de Souza, L.V.; Belettini, C.R.; Menegazzo, W.R.; Viégas, J.R.; Costa Pereira, E.M.; Eick, R.; Araújo, L.; Consolim-Colombo, F.; Irigoyen, M.C. Fluid overload and changes in serum creatinine after cardiac surgery: Predictors of mortality and longer intensive care stay. A prospective cohort study. Crit. Care 2012, 16, R99. [Google Scholar] [CrossRef] [Green Version]
- Rundshagen, I. Postoperative cognitive dysfunction. Dtsch. Arztebl. Int. 2014, 111, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.Y.; Wu, H.Z.; Zhu, P.; Feng, X.B. Postoperative Changes in Hemoglobin and Hematocrit in Patients Undergoing Primary Total Hip and Knee Arthroplasty. Chin. Med. J. 2015, 128, 1977–1979. [Google Scholar] [CrossRef] [PubMed]
- Ntalouka, M.P.; Arnaoutoglou, E.; Tzimas, P. Postoperative cognitive disorders: An update. Hippokratia 2018, 22, 147–154. [Google Scholar]
- Cardoso, T.A.A.M.; Kunst, G.; Neto, C.N.; de Ribamar Costa Júnior, J.; Silva, C.G.S.; Bastos, G.M.; Borges, J.B.; Hirata, M.H. Effect of sevoflurane on the inflammatory response during cardiopulmonary bypass in cardiac surgery: The study protocol for a randomized controlled trial. Trials 2021, 22, 25. [Google Scholar] [CrossRef]
- Li, H.; Wu, T.T.; Tang, L.; Liu, Q.; Mao, X.Z.; Xu, J.M.; Dai, R.P. Association of global DNA hypomethylation with post-operative cognitive dysfunction in elderly patients undergoing hip surgery. Acta Anaesthesiol. Scand. 2020, 64, 354–360. [Google Scholar] [CrossRef]
- Schoen, J.; Husemann, L.; Tiemeyer, C.; Lueloh, A.; Sedemund-Adib, B.; Berger, K.U.; Hueppe, M.; Heringlake, M. Cognitive function after sevoflurane-vs propofol-based anaesthesia for on-pump cardiac surgery: A randomized controlled trial. Br. J. Anaesth. 2011, 106, 840–850. [Google Scholar] [CrossRef] [Green Version]
- McCollum, L.; Karlawish, J. Cognitive Impairment Evaluation and Management. Med. Clin. N. Am. 2020, 104, 807–825. [Google Scholar] [CrossRef]
- Chouliaras, L.; Pishva, E.; Haapakoski, R.; Zsoldos, E.; Mahmood, A.; Filippini, N.; Burrage, J.; Mill, J.; Kivimäki, M.; Lunnon, K.; et al. Peripheral DNA methylation, cognitive decline and brain aging: Pilot findings from the Whitehall II imaging study. Epigenomics 2018, 10, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Zakkar, M.; Ascione, R.; James, A.F.; Angelini, G.D.; Suleiman, M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Warltier, D.C.; Laffey, J.G.; Boylan, J.F.; Cheng, D.C.H. The Systemic Inflammatory Response to Cardiac Surgery: Implications for the Anesthesiologist. Anesthesiology 2002, 97, 215–252. [Google Scholar] [CrossRef]
- Wiersma, M.; van Marion, D.M.S.; Bouman, E.J.; Li, J.; Zhang, D.; Ramos, K.S.; Lanters, E.A.H.; de Groot, N.M.S.; Brundel, B. Cell-Free Circulating Mitochondrial DNA: A Potential Blood-Based Marker for Atrial Fibrillation. Cells 2020, 9, 1159. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Zhu, J.; Song, S.; Huang, Y.; Zhang, W.; Sun, Y.e.; Hao, J.; Yang, X.; Gao, Q.; et al. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic. Biol. Med. 2022, 178, 134–146. [Google Scholar] [CrossRef]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Kothari, N.; Keshari, R.S.; Bogra, J.; Kohli, M.; Abbas, H.; Malik, A.; Dikshit, M.; Barthwal, M.K. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J. Crit. Care 2011, 26, 435.e1–435.e7. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, A.; Kotnik, P.; Horvat, D.; Knez, Ž.; Antonič, M. Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomed. Pharmacother. 2020, 132, 110877. [Google Scholar] [CrossRef]
- Tajik Bahram Pooreydy, F. Organelle Isolation for Proteomics: Mitochondria from Peripheral Blood Mononuclear Cells. J. Paramed. Sci. 2013, 4, 79–86. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Barrientos, A.; Fontanesi, F.; Díaz, F. Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System using Polarography and Spectrophotometric Enzyme Assays. In Current Protocols in Human Genetics; Dracopoli, N.C., Haines, J.L., Korf, B.R., Eds.; Wiley: Hoboken, NJ, USA, 2009; Unit19.3. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhu, M.; Gui, M.; Huang, L.; Long, Z.; Wang, L.; Chen, H.; Yin, Y.; Jiang, X.; Dai, Y.; et al. Peripheral blood mitochondrial DNA copy number is associated with prostate cancer risk and tumor burden. PLoS ONE 2014, 9, e109470. [Google Scholar] [CrossRef] [PubMed]
- Greaves, D.; Psaltis, P.J.; Ross, T.J.; Davis, D.; Smith, A.E.; Boord, M.S.; Keage, H.A.D. Cognitive outcomes following coronary artery bypass grafting: A systematic review and meta-analysis of 91,829 patients. Int. J. Cardiol. 2019, 289, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Zhou, Y.; Campbell, S.L.; Le, T.; Li, E.; Sweatt, J.D.; Silva, A.J.; Fan, G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 2010, 13, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Fagiolini, M.; Jensen, C.L.; Champagne, F.A. Epigenetic influences on brain development and plasticity. Curr. Opin. Neurobiol. 2009, 19, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Agha, G.; Baccarelli, A.A. The Role of DNA Methylation in Cardiovascular Risk and Disease: Methodological Aspects, Study Design, and Data Analysis for Epidemiological Studies. Circ. Res. 2016, 118, 119–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boovarahan, S.R.; Kurian, G.A. Investigating the role of DNMT1 gene expression on myocardial ischemia reperfusion injury in rat and associated changes in mitochondria. Biochim. Biophys. Acta Bioenerg. 2022, 1863, 148566. [Google Scholar] [CrossRef]
- Caputi, F.F.; Carboni, L.; Rullo, L.; Alessandrini, I.; Balzani, E.; Melotti, R.M.; Romualdi, P.; Candeletti, S.; Fanelli, A. An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Front. Pharmacol. 2021, 12, 733577. [Google Scholar] [CrossRef]
- Ni, C.; Qian, M.; Geng, J.; Qu, Y.; Tian, Y.; Yang, N.; Li, S.; Zheng, H. DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats. Front. Aging Neurosci. 2020, 12, 211. [Google Scholar] [CrossRef]
- Ni, C.; Li, Z.; Qian, M.; Zhou, Y.; Wang, J.; Guo, X. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling. Biochem. Biophys. Res. Commun. 2015, 460, 889–895. [Google Scholar] [CrossRef]
- Freire, C.M.M.; Braz, M.G.; Marcondes, J.P.C.; Arruda, N.M.; Braz, J.R.C.; Rainho, C.A.; Braz, L.G.; Salvadori, D.M.F. Expression and promoter methylation status of two DNA repair genes in leukocytes from patients undergoing propofol or isoflurane anaesthesia. Mutagenesis 2018, 33, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Holtkamp, C.; Koos, B.; Unterberg, M.; Rahmel, T.; Bergmann, L.; Bazzi, Z.; Bazzi, M.; Bukhari, H.; Adamzik, M.; Rump, K. A novel understanding of postoperative complications: In vitro study of the impact of propofol on epigenetic modifications in cholinergic genes. PLoS ONE 2019, 14, e0217269. [Google Scholar] [CrossRef] [PubMed]
- Rump, K.; Holtkamp, C.; Bergmann, L.; Nowak, H.; Unterberg, M.; Orlowski, J.; Thon, P.; Bazzi, Z.; Bazzi, M.; Adamzik, M.; et al. Midazolam impacts acetyl-And butyrylcholinesterase genes: An epigenetic explanation for postoperative delirium? PLoS ONE 2022, 17, e0271119. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Liu, Q.; Cheng, C.; Li, M.; Barash, J.; Kofke, W.A.; Shen, Y.; Xie, Z. Fentanyl induces autism-like behaviours in mice by hypermethylation of the glutamate receptor gene Grin2b. Br. J. Anaesth. 2022, 129, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Apaijai, N.; Sriwichaiin, S.; Phrommintikul, A.; Jaiwongkam, T.; Kerdphoo, S.; Chansirikarnjana, S.; Thongmung, N.; Mahantassanapong, U.; Vathesatogkit, P.; Kitiyakara, C.; et al. Cognitive impairment is associated with mitochondrial dysfunction in peripheral blood mononuclear cells of elderly population. Sci. Rep. 2020, 10, 21400. [Google Scholar] [CrossRef]
- Cherry, A.D. Mitochondrial Dysfunction in Cardiac Surgery. Anesthesiol. Clin. 2019, 37, 769–785. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Lancaster, J.R.; Meszaros, A.T.; Weidinger, A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 2017, 13, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014, 5, 66–72. [Google Scholar] [CrossRef]
- Yamamoto, K.; Imamura, H.; Ando, J. Shear stress augments mitochondrial ATP generation that triggers ATP release and Ca2+ signaling in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1477–H1485. [Google Scholar] [CrossRef] [Green Version]
- Hadem, J.; Rossnick, R.; Hesse, B.; Herr, M.; Hansen, M.; Bergmann, A.; Kensah, G.; Maess, C.; Baraki, H.; Kümpers, P.; et al. Endothelial dysfunction following coronary artery bypass grafting: Influence of patient and procedural factors. Herz 2020, 45, 86–94. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Abraham Daniel, A.; Silzer, T.; Sun, J.; Zhou, Z.; Hall, C.; Phillips, N.; Barber, R. Hypermethylation at CREBBP Is Associated with Cognitive Impairment in a Mexican American Cohort. J. Alzheimer’s Dis. 2023, 92, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.G.; Balasubramanian, N.; Manjrekar, R.; Banerjee, T.; Sakharkar, A. DNA Methylation-Mediated Mfn2 Gene Regulation in the Brain: A Role in Brain Trauma-Induced Mitochondrial Dysfunction and Memory Deficits. Cell. Mol. Neurobiol. 2023. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
DNMT1 | 5′-GGCTCCGTTCCATCCTTCTG-3′ | 5′-CAAATCTTTGAGCCGCCTGC-3′ |
DNMT3A | 5′-GGGGACGTCCGCAGCGTCACAC-3′ | 5′-CAGGGTTGGACTCGAGAAATCGC-3′ |
DNMT3B | 5′-CCTGCTAATTACTCACGCCCC-3′ | 5′-GTCTGTGTAGTGCACAGGAAAGCC-3′ |
TET1 | 5′-TCCTGGTGCTATTCCAGTCC-3′ | 5′-CAGGAAGGAAGACAGGCAAG-3′ |
TET2 | 5′-ACTCACCCATCGCATACCTC-3′ | 5′-TCAGCATCATCAGCATCACA-3′ |
TET3 | 5′-CCCAGACTCCAACTGCTAC-3′ | 5′-TGGGTCCTCCATTCTGAGAC-3′ |
GAPDH | 5′-CCTGCACCACCAACTGCTTA-3′ | 5′-GGCCATCCACAGTCTTCTGA-3′ |
MT-ND1 | 5′-AACATACCCATGGCCAACCT-3′ | 5′-AGCGAAGGGTTGTAGTAGCCC-3′ |
Human β globin | 5′-GAAGAGCCAAGGACAGGTAC-3′ | 5′-CAACTTCATCCACGTTCACC-3′ |
Characteristics | Off-Pump CABG Patients (n = 76) |
---|---|
Age-years | 57.61 ± 7.19 |
Male sex-no. (%) | 60 (79) |
Clinical history-no. (%) | |
Diabetes | 53 (70) |
Hypertension | 33 (43) |
Smoker | 07 (9) |
Alcoholic | 09 (12) |
Left ventricular ejection fraction-no (%) | |
Grade 1 (≥50%) | 37 (49) |
Grade 2 (35 to 49%) | 35 (46) |
Grade 3 (20 to 34%) | 04 (05) |
Grade 4 (<20%) | 00 (00) |
Disease vessel—no. (%) | |
Triple | 72 (94) |
Double | 02 (03) |
Single | 02 (03) |
Education—no. (%) | |
More than 10 years | 17 (22) |
4 years to 10 years | 56 (74) |
Illiterate | 03 (04) |
Ejection fraction % | Pre-surgery: 51.03 ± 0.04 Post-surgery: 56.06 ± 0.04 |
cTnI (ng/mL) | Pre-surgery: 1.50 ± 0.02 Post-surgery: 1.15 ± 0.01 |
Function Tested | Pre-Surgery | Post-Surgery | ||
---|---|---|---|---|
r Value | p Value | r Value | p Value | |
Executive function | −0.03 | 0.775 | 0.091 | 0.459 |
Fluency | 0.35 | 0.003 | 0.35 | 0.003 |
Orientation | 0.70 | <0.0001 | 0.70 | <0.0001 |
Calculation | 0.43 | 0.0002 | 0.35 | 0.003 |
Abstraction | 0.64 | <0.0001 | 0.64 | <0.0001 |
Delayed Recall | 0.71 | <0.0001 | 0.69 | <0.0001 |
Visuo-perception | 0.72 | <0.0001 | 0.63 | <0.0001 |
Naming | 0.62 | <0.0001 | 0.48 | <0.0001 |
Attention | 0.00 | - | 0.00 | - |
Total score | 0.96 | <0.0001 | 0.97 | <0.0001 |
Characteristic | p Value | r Value |
---|---|---|
cTnI in cases with pre-surgery MCI | 0.469 | 0.028 (p = 0.891) |
cTnI in cases with post-surgery MCI | 0.463 | −0.072 (p = 0.7200) |
Genes | Fold Changes in Gene Expression | Unpaired t Test—p Value | Post Surgery Correlation (vs. MoCA Score): Pearson’s Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Control | Pre-Surgery | Post-Surgery | Ctrl vs. Pre | Ctrl vs. Post | Pre vs. Post | r Value | p Value | |
DNMT1 | 1.11 ± 0.09 | 2.62 ± 0.90 | 3.08 ± 1.89 | 0.0171 | 0.0393 | 0.8186 | −0.8573 | 0.0498 |
DNMT3A | 1.32 ± 0.18 | 1.37 ± 0.14 | 1.38 ± 0.16 | 0.9181 | 0.9542 | 0.9674 | −0.5698 | 0.1780 |
DNMT3B | 1.43 ± 0.04 | 1.4 ± 0.44 | 1.28 ± 0.16 | 0.8452 | 0.8903 | 0.8902 | −0.7890 | 0.4298 |
TET1 | 5.27 ± 1.12 | 2.06 ± 1.03 | 4.21 ± 2.24 | 0.1301 | 0.6528 | 0.4030 | 0.7803 | 0.7420 |
TET2 | 1.23 ± 0.21 | 0.81 ± 0.09 | 0.79 ± 0.08 | 0.5231 | 0.7520 | 0.9451 | 0.6931 | 0.5077 |
TET3 | 0.74 ± 0.18 | 1.15 ± 0.42 | 5.43 ± 2.88 | 0.3189 | 0.0056 | 0.1684 | 0.6734 | 0.3591 |
Mitochondrial Parameters | Control | Pre-Surgery | Post-Surgery | Unpaired t Test—p Value | Post Surgery Correlation (vs. MoCA Score): Pearson’s Coefficient | |||
---|---|---|---|---|---|---|---|---|
Ctrl vs. Pre | Ctrl vs. Post | Pre vs. Post | r Value | p-Value | ||||
ND1 expression (Relative ND1 expression) | 4.34 ± 1.18 | 8.91 ± 3.12 | 2.46 ± 0.98 | 0.752 | 0.2227 | 0.1264 | 0.8971 | 0.5268 |
NQR activity (nM NADH oxidized/min/mg protein) | 38.34 ± 4.33 | 5.62 ± 1.29 | 4.76 ± 0.95 | <0.0001 | <0.0001 | 0.6331 | 0.8652 | 0.0398 |
Mt Copy no. | 0.91 ± 0.03 | 1.55 ± 0.62 | 1.38 ± 0.37 | 0.0165 | 0.0106 | 0.806 | −0.8309 | 0.0489 |
ATP (Luminescence counts) | 4997.26 ± 1362.41 | 15,776.25 ± 4962.66 | 17,299.42 ± 4192.17 | 0.0009 | <0.0001 | 0.8212 | −0.7043 | 0.1823 |
MPO activity (U/L) | 14.22 ± 1.21 | 20.1 ± 4.30 | 22.63 ± 4.30 | 0.0125 | 0.0263 | 0.8337 | 0.7028 | 0.5621 |
Pre-Surgery Mean ± SEM | Post-Surgery Mean ± SEM | p-Value | Post Surgery Correlation: Pearson’s Coefficient r Value—(vs. %EF) | Post Surgery Correlation: p Value—(vs %EF) | Post Surgery Correlation: Pearson’s Coefficient r Value—(vs. TnI) | Post Surgery Correlation: p Value—(vs. TnI) | |
---|---|---|---|---|---|---|---|
mRNA expression: DNMT1 | 0.17 ± 0.02 | 0.44 ± 0.11 * | 0.04 | −0.885 | 0.046 | −0.846 | 0.154 |
mRNA expression: DNMT3A | 1.21 ± 0.12 | 1.24 ± 0.21 | 0.89 | −0.121 | 0.812 | 0.212 | 0.368 |
mRNA expression: DNMT3B | 0.88 ± 0.09 | 0.94 ± 0.31 | 0.85 | −0.113 | 0.561 | 0.131 | 0.412 |
mRNA expression: TET1 | 2.61 ± 0.63 | 5.65 ± 2.88 * | 0.04 | −0.849 | 0.033 | −0.942 | 0.017 |
mRNA expression: TET2 | 0.13 ± 0.06 | 0.12 ± 0.03 * | 0.99 | −0.212 | 0.312 | 0.134 | 0.381 |
mRNA expression: TET3 | 0.08 ± 0.03 | 0.22 ± 0.11 | 0.04 | −0.293 | 0.931 | 0.463 | 0.433 |
Global %5 mC | 2.64 ± 0.40 | 2.51 ± 0.29 | 0.28 | 0.413 | 0.180 | 0.708 | 0.180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boovarahan, S.R.; Kale, S.B.; Prem, P.N.; Ravindran, S.; Arthanarisami, A.; Rengaraju, J.; Ali, N.; Ramalingam, S.; Mohany, M.; AlAsmari, A.F.; et al. CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort. J. Clin. Med. 2023, 12, 4146. https://doi.org/10.3390/jcm12124146
Boovarahan SR, Kale SB, Prem PN, Ravindran S, Arthanarisami A, Rengaraju J, Ali N, Ramalingam S, Mohany M, AlAsmari AF, et al. CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort. Journal of Clinical Medicine. 2023; 12(12):4146. https://doi.org/10.3390/jcm12124146
Chicago/Turabian StyleBoovarahan, Sri Rahavi, Suresh Babu Kale, Priyanka N. Prem, Sriram Ravindran, Akshayakeerthi Arthanarisami, Jeyashri Rengaraju, Nemat Ali, Senthilkumar Ramalingam, Mohamed Mohany, Abdullah F. AlAsmari, and et al. 2023. "CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort" Journal of Clinical Medicine 12, no. 12: 4146. https://doi.org/10.3390/jcm12124146
APA StyleBoovarahan, S. R., Kale, S. B., Prem, P. N., Ravindran, S., Arthanarisami, A., Rengaraju, J., Ali, N., Ramalingam, S., Mohany, M., AlAsmari, A. F., Al-Rejaie, S. S., Waseem, M., & Kurian, G. A. (2023). CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort. Journal of Clinical Medicine, 12(12), 4146. https://doi.org/10.3390/jcm12124146