Next Article in Journal
Emulsification Characteristics Using a Dynamic Woven Metal Microscreen Membrane
Next Article in Special Issue
Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review
Previous Article in Journal
Erratum: Nicotera, I.; Angjeli, K.; Coppola, L.; Aricò, A.S.; Baglio, V. NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs. Membranes 2012, 2, 325–345
Article Menu

Export Article

Open AccessReview
Membranes 2016, 6(2), 33; doi:10.3390/membranes6020033

Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
*
Author to whom correspondence should be addressed.
Academic Editor: Marco Stoller
Received: 14 April 2016 / Revised: 8 June 2016 / Accepted: 12 June 2016 / Published: 15 June 2016
(This article belongs to the Special Issue Membranes and Water Treatment 2016)
View Full-Text   |   Download PDF [1660 KB, uploaded 16 June 2016]   |  

Abstract

The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. View Full-Text
Keywords: aerobic granulation; extracellular polymeric substances (EPS); membrane bioreactor (MBR); membrane fouling; quorum quenching; soluble microbial products (SMPs); wastewater treatment aerobic granulation; extracellular polymeric substances (EPS); membrane bioreactor (MBR); membrane fouling; quorum quenching; soluble microbial products (SMPs); wastewater treatment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes 2016, 6, 33.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Membranes EISSN 2077-0375 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top