Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Graphene Oxide and ZIF-8
2.3. TFC Membrane Preparation
2.4. Characterization of Inorganic Fillers and the PA-TFC Membranes
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.2. X-ray Diffraction Spectroscopy (XRD)
2.4.3. Raman Spectroscopy (RS)
2.4.4. Scanning Electron Microscopy (SEM)
2.4.5. Transmission Electron Microscopy (TEM)
2.4.6. Atomic Force Microscopy (AFM)
2.4.7. Thermogravimetric Analysis (TGA)
2.4.8. Brunauer–Emmett–Teller (BET)
2.4.9. Contact Angle Measurements
2.4.10. Membrane Performance Measurements Studies
3. Results and Discussion
3.1. Characterization of GO, ZIF-8 and ZIF-8@GO
3.1.1. Fourier Transform-Infrared (FTIR) Spectroscopy
3.1.2. Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS)
3.1.3. Transmission Electron Microscope (TEM)
3.1.4. X-ray Diffraction (XRD) Analysis
3.1.5. Raman Analysis
3.1.6. Brunauer–Emmett–Teller (BET)
3.1.7. Thermogravimetric Analysis (TGA)
3.2. Characterization and TFC Membrane Performance
3.2.1. FTIR Ccharacterizations of the PES (M0), PA-TFC (M1), GO (M2), ZIF-8 (M3), ZIF-8@GO (0.1:1) (M4), ZIF-8@GO (0.5:1) (M5), ZIF-8@GO (0.9:1) (M6), ZIF-8@GO (1:1) (M7) Membranes
3.2.2. SEM Surface Morphology of Membranes
3.2.3. Cross-Section Analysis of Membranes
3.2.4. AFM Surface Analysis of the Membranes
3.2.5. Water Contact Angle (WCA)
3.2.6. Water Flux
3.2.7. Rejection of Salts
3.2.8. Membrane Fouling Assessment
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arumugham, T.; Kaleekkal, N.J.; Rana, D. Fabrication of novel aromatic amine functionalized nanofiltration (NF) membranes and testing its dye removal and desalting ability. Polym. Test. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Yu, C.; Lia, H.; Zhanga, X.; Lüa, Z.; Yua, S.; Liub, M.; Gao, C. Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance. J. Membr. Sci. 2018, 566, 87–95. [Google Scholar] [CrossRef]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Hegab, H.M.; ElMekawy, A.; Barclay, T.G. A novel fabrication approach for multifunctional graphene-based thin film nano-composite membranes with enhanced desalination and antibacterial characteristics. Sci. Rep. 2017, 7, 7490. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.R.; Xu, J.M.; Feng, H.J.; Zhao, H.L.; Wu, S.B. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination 2017, 417, 19–35. [Google Scholar] [CrossRef]
- Ahmad, N.; Goh, P.; Abdul Karim, Z.; Ismail, A. Thin film composite membrane for oily wastewater treatment: Recent advances and challenges. Membranes 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Naimah, N.; Ahmad, R.; Mukhtar, H.; Mohshim, D.F.; Nasir, R. Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Rev. Chem. Eng. 2016, 32, 181–200. [Google Scholar] [CrossRef]
- Rabbani, M.; Aghapour, S.; Dabaghian, Z. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2018, 213, 465–499. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal—Organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Dechnik, J.; Sumby, C.J.; Janiak, C. Enhancing mixed-matrix membrane performance with metal-organic framework additives. Cryst. Growth Des. 2017, 17, 4467–4488. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Abdalla, A.A.; Khaleel, M.A.; Hilal, N.; Khraisheh, M.K. Mechanical properties of water desalination and wastewater treatment membranes. Desalination 2017, 401, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Yang, H.; Wang, N.; Wang, L.; Liu, H.; An, Q.; Ji, S. BeijingVacuum-assisted assembly of ZIF-8 @ GO composite membranes on ceramic tube with enhanced organic solvent nano fi ltration performance. J. Membr. Sci. 2018, 545, 158–166. [Google Scholar] [CrossRef]
- Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A. 2013, 1, 10058–10077. [Google Scholar] [CrossRef]
- Abdi, J.; Vossoughi, M.; Mahmoodi, N.M.; Alemzadeh, I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 2017, 326, 1145–1158. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, S.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Aljundi, I.H. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination 2017, 420, 12–20. [Google Scholar] [CrossRef]
- Song, X.; Qi, S.; Tang, C.Y.; Gao, C. Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. J. Membr. Sci. 2017, 540, 10–18. [Google Scholar] [CrossRef]
- Fane, A.G.; Tang, C.Y.; Wang, R. Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. Elsevier 2011, 4, 301–335. [Google Scholar] [CrossRef]
- Low, Z.X.; Liu, Q.; Shamsaei, E.; Zhang, X.; Wang, H. Preparation, and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process. Membranes 2015, 5, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.E.A.; Wang, L.; Wang, X.; Feng, X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016, 386, 67–76. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Rajaeian, B.; Rahimnejad, M. TiO2 entrapped nano composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011, 278, 343–353. [Google Scholar] [CrossRef]
- Wu, M.; Ma, T.; Su, Y.; Wu, H.; You, X.; Jiang, Z.; Kasher, R. Fabrication of composite nano fi ltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. J. Membr. Sci. 2017, 544, 79–87. [Google Scholar] [CrossRef]
- Huang, D.; Xin, Q.; Ni, Y.; Shuai, Y.; Wang, S.; Li, Y.; Ye, H.; Lin, L.; Dinga, X.; Zhang, Y. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Adv. 2018, 8, 6099–6109. [Google Scholar] [CrossRef] [Green Version]
- Chu, F.; Zheng, Y.; Wen, B.; Zhou, L.; Yan, J.; Chen, Y. Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere. RSC Adv. 2018, 8, 2426–2432. [Google Scholar] [CrossRef] [Green Version]
- Makhetha, T.A.; Ray, S.C.; Moutloali, R.M. Zeolitic imidazolate framework-8-encapsulated nanoparticle of ag/cu composites supported on graphene oxide: Synthesis and antibacterial activity. Am. Chem. Soc. 2020, 5, 9626–9640. [Google Scholar] [CrossRef]
- Mao, J.; Ge, M.; Huang, J.; Lai, Y. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 2017, 5, 11873–11881. [Google Scholar] [CrossRef]
- Luanwuthi, S.; Krittayavathananon, A.; Srimuk, P.; Sawangphruk, M. In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: Rotating disk electrode and Langmuir adsorption isotherm. RSC Adv. 2015, 5, 46617–46623. [Google Scholar] [CrossRef]
- Tian, Z.; Yao, X.; Zhu, Y. Simple synthesis of multifunctional zeolitic imidazolate frameworks-8/graphene oxide nanocrystals with controlled drug release and photothermal effect. Microporous Mesoporous Mater. 2017, 237, 160–167. [Google Scholar] [CrossRef]
- Ismail, A.F.; Misdan, N. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. In AIP Conference Proceedings; IP Publishing LLC: Melville, NY, USA, 2017; Volume 1891, pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Miyamoto, M.; Makino, T. Adsorption, and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. 2015, 119, 28430–28439. [Google Scholar] [CrossRef] [Green Version]
- Chae, H.R.; Lee, C.H.; Park, P.K.; Kim, I.C.; Kim, J.H. Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes. J. Membr. Sci. 2017, 525, 99–106. [Google Scholar] [CrossRef]
- Zhao, P.; Lampronti, G.I.; Lloyd, G.O.; Wharmby, M.T.; Facq, S.; Cheetham, K.A.; Redfern, S.A.T. Phase transitions in zeolitic imidazolate framework 7: The importance of framework flexibility and guest-induced instability. Chem. Mater. 2014, 26, 1767–1769. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Zhang, Y.; Uliana, A.; Zhu, J.; Liu, J.; Van Der Bruggen, B. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Appl. Mater. Interfaces 2016, 8, 25508–25519. [Google Scholar] [CrossRef]
- Tang, J.; Salunkhe, R.; Zhang, H.; Malgras, V.; Ahamad, T.; AlShehri, S.M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J.H.; et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Nat. Publ. Gr. 2016, 6, 3–4. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, L.; Zhang, H.; Karakalos, S.; Ma, K.; Fu, Z.; Swihart, M.T.; Wu, G. Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. Electrochim. Acta 2017, 258, 735–743. [Google Scholar] [CrossRef]
- Raj, K.; Kandula, S.; Hoon, N.; Hee, J. A spinel MnCo2O4/NG 2D/2D hybrid nanoarchitectures as advanced electrode material for high performance hybrid supercapacitors. J. Alloys Compd. 2018, 771, 810–820. [Google Scholar] [CrossRef]
- Nordin, N.A.H.M.; Ismail, A.F.; Mustafa, A.; Goh, P.S.; Ranab, D.; Matsuura, T. Aqueous room temperature synthesis of zeolitic. RSC Adv. 2014, 4, 33292–33300. [Google Scholar] [CrossRef]
- Jian, M.; Wang, H.; Liu, R.; Qu, J.; Wanga, H.; Zhang, X. Self-assembled one-dimensional MnO2@zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal. Environ. Sci. Nano 2016, 3, 1186–1194. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, L.; Rudolph, V.; Zhu, Z. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. R. Soc. Chem. 2014, 3, 7028–7036. [Google Scholar] [CrossRef] [Green Version]
- Babangida, I. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int. J. Nanomed. 2015, 10, 1505–1519. [Google Scholar]
- Zhu, S.; Zhao, S.; Wang, Z.; Tian, X.; Shi, M. Improved performance of polyamide thin- film composite nano filtration membrane by using polyetersulfone/polyaniline membrane as the substrate. J. Membr. Sci. 2015, 493, 263–274. [Google Scholar] [CrossRef]
- Hong, T.; Nguyen, T.; Khai, D.; Nguyen, T.T.; Mori, S.; Thi, D. Tran Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J. Sci. Adv. Mater. Devices 2016, 1, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Wu, D. Thin Film Composite Membranes Derived from Interfacial Polymerization for Nanofiltration and Pervaporation. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Bano, S.; Mahmood, A. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J. Mater. Chem. A 2015, 3, 2065–2071. [Google Scholar] [CrossRef]
- Li, Y.; Wee, L.H.; Martens, J.A.; Vankelecom, I.F.J. performance crossmark. J. Membr. Sci. 2017, 523, 561–566. [Google Scholar] [CrossRef]
- Zha, S.; Gusnawana, P.; Zhanga, G.; Liuc, N.; Leea, R.; Yu, J. Experimental study of PES/SiO2 based TFC hollow fiber membrane modules for oilfield produced water desalination with low-pressure nanofiltration process. J. Ind. Eng. Chem. 2016, 44, 118–125. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Goh, P.S.; Hilal, N.; Ooi, B.S. Characterization methods of thin film composite nanofiltration membranes. Sep. Purif. Rev. 2015, 44, 135–156. [Google Scholar] [CrossRef]
- Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination 2012, 284, 32–41. [Google Scholar] [CrossRef]
- Jamil, T.S.; Mansor, E.S.; Abdallah, H.; Shaban, A.M. Innovative high flux/low pressure blend thin film composite membranes for water softening. React. Funct. Polym. 2018, 131, 384–399. [Google Scholar] [CrossRef]
- Sark, J.F.; Jullok, N. Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis. Membranes 2021, 11, 448. [Google Scholar] [CrossRef]
- Makhetha, T.A.; Moutloali, R.M. Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. J. Membr. Sci. 2018, 554, 195–210. [Google Scholar] [CrossRef]
- Liu, F.; Ma, B.; Zhou, D.; Zhu, L.; Fu, Y.; Xue, L. Reactive & Functional Polymers Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal. React. Funct. Polym. 2015, 86, 191–198. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Luque-alled, J.M.; Abdel-Karima, A.; Albertoc, M.; Leapera, S.; Perez-Pagea, M.; Huanga, K.; Vijayaraghavanc, A.; El-Kallinyb, A.S.; Holmesa, S.M.; Gorgojo, P. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Sep. Purif. Technol. 2020, 230, 115836. [Google Scholar] [CrossRef]
- Shen, L.; Xiong, S.; Wang, Y. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chem. Eng. Sci. 2016, 143, 194–205. [Google Scholar] [CrossRef]
- Al Mayyahi, A. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance. Membranes 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Chung, L.; Lin, G.; Chang, M.; Lee, C.; Tai, N. Enhancing the Efficiency of a Forward Osmosis Membrane with a Polydopamine/Graphene Oxide Layer Prepared Via the Modified Molecular Layer-by-Layer Method. ACS Omega. 2020, 5, 18738–18745. [Google Scholar] [CrossRef]
- Abuhabib, A.A. Improvement for Desalination Applications. Intech Open 2018, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Chauke, N.M.; Moutloali, R.M.; Ramontja, J. Development of ZSM-22/polyethersulfone membrane for effective salt rejection. Polymers 2020, 12, 1446. [Google Scholar] [CrossRef]
- Misdan, N.; Lau, W.J.; Ong, C.S.; Ismail, A.F.; Matsuura, T. Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions. Korean J. Chem. Eng. 2015, 32, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Inurria, A.; Cay-Durgunb, P.; Ricea, D.; Zhangd, H.; Seod, D.; Lindb, M.L.; Perreaulta, F. Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity. Desalination 2018, 451, 139–147. [Google Scholar] [CrossRef]
- Bokhary, A.; Tikka, A.; Leitch, M.; Liao, B. Membrane Fouling Prevention and Control Strategies in Pulp and Paper Industry Applications: A Review. J. Membr. Sci. Res. 2018, 4, 181–197. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A.; Esmaeili, M. Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO. Sep. Purif. Technol. 2015, 154, 96–107. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kook, S.; Lee, C.; Field, R.W.; Kim, I.S. Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility. J. Membr. Sci. 2019, 570, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.T. Fouling of Seawater Reverse Osmosis (SWRO) Membrane: Chemical and Microbiological Characterization. Ph.D. Thesis, King Abdullah University of Science & Technology (KAUST), Thuwal, Saudi Arabia, December 2013. [Google Scholar]
- Breite, D.; Went, M.; Prager, A.; Schulze, A. Tailoring membrane surface charges: A novel study on electrostatic interactions during membrane fouling. Polymers 2015, 7, 2017–2030. [Google Scholar] [CrossRef] [Green Version]
Additives | Ratio ZIF8: GO | GO (mg) | (Zn(NO3)2.- 6H2O (g) | Methanol (mL) | 2-methyl-imidazole (g) | Methanol (mL) |
---|---|---|---|---|---|---|
ZIF-8@GO | 0.1:1 | 80 | 0.07 | 4 | 0.21 | 1 |
ZIF-8@GO | 0.5:1 | 80 | 0.35 | 20 | 1.05 | 5 |
ZIF-8@GO | 0.9:1 | 80 | 0.63 | 36 | 1.89 | 9 |
ZIF-8@GO | 1.0:1 | 80 | 0.70 | 40 | 2.10 | 10 |
Sample | MPD (wt.%) | TMC (wt.%) | Ratio (ZIF-8:GO) | Concentration (wt.%) |
---|---|---|---|---|
TFC (M1) | 2 | 0.4 | - | - |
GO (M2) | 2 | 0.4 | - | 0.5 |
ZIF-8 (M3) | 2 | 0.4 | - | 0.5 |
ZIF-8@GO (M4) | 2 | 0.4 | 0.1:1 | 0.5 |
ZIF-8@GO (M5) | 2 | 0.4 | 0.5:1 | 0.5 |
ZIF-8@GO (M6) | 2 | 0.4 | 0.9:1 | 0.5 |
ZIF-8@GO (M7) | 2 | 0.4 | 1.0:1 | 0.5 |
Sample | C | O | Zn | N |
---|---|---|---|---|
ZIF-8@GO (0.1:1) | 58.8 | 25.3 | 5.9 | 10 |
ZIF-8@GO (0.5:1) | 51.4 | 22.3 | 18.6 | 7.7 |
ZIF-8@GO (0.9:1) | 55.4 | 10.9 | 17.3 | 16.4 |
ZIF-8@GO (1:1) | 57.3 | 9.5 | 15.4 | 17.8 |
Sample | Surface Area (m2g−1) | Pore Volume (cm3g−1) | Pore Diameter (nm) |
---|---|---|---|
GO | 21.93 | 0.69 | 125.81 |
ZIF-8 | 985.37 | 1.12 | 4.53 |
ZIF-8@GO(0.1:1) | 10.12 | 0.76 | 299.67 |
ZIF-8@GO(0.5:1) | 471.91 | 0.44 | 3.69 |
ZIF-8@GO(0.9:1) | 636.48 | 0.45 | 2.80 |
Membranes | Ra (nm) | Rq (nm) | Permeability |
---|---|---|---|
M0 | 215.4 | 278.35 | 0.036 |
M1 | 141.88 | 179.29 | 0.27 |
M2 | 90.09 | 121.7 | 0.101 |
M3 | 136.26 | 179.08 | 0.17 |
M4 | 46.91 | 64.48 | 0.12 |
M5 | 86.87 | 109.28 | 0.07 |
M6 | 71.53 | 98.51 | 0.136 |
M7 | 74.04 | 94.27 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masibi, E.G.; Makhetha, T.A.; Moutloali, R.M. Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling. Membranes 2022, 12, 436. https://doi.org/10.3390/membranes12040436
Masibi EG, Makhetha TA, Moutloali RM. Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling. Membranes. 2022; 12(4):436. https://doi.org/10.3390/membranes12040436
Chicago/Turabian StyleMasibi, Elizabeth Gaobodiwe, Thollwana Andretta Makhetha, and Richard Motlhaletsi Moutloali. 2022. "Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling" Membranes 12, no. 4: 436. https://doi.org/10.3390/membranes12040436