Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes
Abstract
:1. Introduction
2. Sighting of the Self-Discharge Voltage in a PEM Electrolyzer
2.1. Description of the Experimental Test Setup
2.2. Self-Discharge Voltage Issues
3. Mathematical Model
4. Validation and Discussion
4.1. Discussion
4.2. Self-Discharge Prevention
- A compromise must be found in the thickness of the membrane to reduce the self-discharging. A thin membrane leads to lower resistance, consequently increasing the gas crossover and leakage currents. An increase of the membrane thickness (improving the permeability of the membrane against gas crossover) leads to higher losses in the membrane, and as a result a decrease in energy efficiency [15,35].
- The operating temperature must be as low as possible to enhance the protective function of the membrane against gas crossover. A higher operating temperature leads to lower resistance and consequently contributes to gas crossover, as highlighted in previous works focused on the effect of the temperature on Faraday’s efficiency [11].
- The operating pressure must be as small as possible to limit the gas crossover.
- To avoid the limitation of the operating conditions (pressure, temperature) while keeping a thinner membrane, the self-discharge can be compensated by supplying the PEM electrolyzer with a small current (contributing to a constant OCV).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OCV | Open-Circuit Voltage |
PEM | Proton Exchange Membrane |
RES | Renewable Energies Sources |
SLPM | Standard Liter Per Minute |
SO | Solid Oxide |
References
- Abbasi, T.; Abbasi, S. ‘renewable’ hydrogen: Prospects and challenges. Renew. Sustain. Energy Rev. 2011, 15, 3034–3040. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mehrpooya, M. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 2018, 158, 632–655. [Google Scholar] [CrossRef]
- Ursúa, A.; Gandía, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chen, C.-H.; Li, S.-C.; Wang, Y.-S. Development and application of flexible integrated microsensor as real-time monitoring tool in proton exchange membrane water electrolyzer. Renew. Energy 2019, 143, 906–914. [Google Scholar] [CrossRef]
- Ruuskanen, V.; Koponen, J.; Sillanpää, T.; Huoman, K.; Kosonen, A.; Niemelä, M.; Ahola, J. Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation. Renew. Energy 2018, 119, 106–115. [Google Scholar] [CrossRef]
- Corengia, M.; Torres, A.I. Two-phase dynamic model for pem electrolyzer. In 13th International Symposium on Process Systems Engineering (PSE 2018); Eden, M.R., Ierapetritou, M.G., Towler, G.P., Eds.; Volume 44 of Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1435–1440. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Y.; Cohen, S.; Carter, B.D.; Boehm, R.F. Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell. Int. J. Therm. Sci. 2009, 48, 1914–1922. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int. J. Hydrogen Energy 2015, 40, 13243–13257. [Google Scholar] [CrossRef]
- Rahim, A.H.A.; Tijani, A.S.; Kamarudin, S.K.; Hanapi, S. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport. J. Power Sources 2016, 309, 56–65. [Google Scholar] [CrossRef]
- Ulleberg, O. Modeling of advanced alkaline electrolyzers: A system simulation approach. Int. J. Hydrogen Energy 2003, 28, 21–33. [Google Scholar] [CrossRef]
- Sánchez, M.; Amores, E.; Rodríguez, L.; Clemente-Jul, C. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer. Int. J. Hydrogen Energy 2018, 43, 20332–20345. [Google Scholar] [CrossRef]
- Guilbert, D.; Vitale, G. Experimental validation of an equivalent dynamic electrical model for a proton exchange membrane electrolyzer. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D.; Saldivar, B. Development of an adaptive static-dynamic electrical model based on input electrical energy for pem water electrolysis. Int. J. Hydrogen Energy 2020, 45, 18817–18830. [Google Scholar] [CrossRef]
- Schalenbach, M.; Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. Pressurized PEM water electrolysis: Efficiency and gas crossover. Int. J. Hydrogen Energy 2013, 38, 14921–14933. [Google Scholar] [CrossRef]
- Koponen, J.; Kosonen, A.; Ruuskanen, V.; Huoman, K.; Niemelä, M.; Ahola, J. Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int. J. Hydrogen Energy 2017, 42, 29648–29660. [Google Scholar] [CrossRef]
- Schalenbach, M. Corrigendum to ‘pressurized PEM water electrolysis: Efficiency and gas crossover’ [Int.J.HydrogenEnergy 2013, 38, 14921–14933]. Int. J. Hydrogen Energy 2016, 41, 729–732. [Google Scholar] [CrossRef]
- Conway, B.E.; Pell, W.; Liu, T.-C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J. Power Sources 1997, 65, 53–59. [Google Scholar] [CrossRef]
- Andreas, H.A. Self-discharge in electrochemical capacitors: A perspective article. J. Electrochem. Soc. 2015, 162, A5047–A5053. [Google Scholar] [CrossRef]
- de Fazio, R.; Cafagna, D.; Marcuccio, G.; Visconti, P. Limitations and characterization of energy storage devices for harvesting applications. Energies 2020, 13, 783. [Google Scholar] [CrossRef] [Green Version]
- Olaszi, B.D.; Ladanyi, J. Comparison of different discharge strategies of grid-connected residential pv systems with energy storage in perspective of optimal battery energy storage system sizing. Renew. Sustain. Energy Rev. 2017, 75, 710–718. [Google Scholar] [CrossRef]
- Ke, B.-R.; Lin, Y.-H.; Chen, H.-Z.; Fang, S.-C. Battery charging and discharging scheduling with demand response for an electric bus public transportation system. Sustain. Energy Technol. Assessments 2020, 40, 100741. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, J.; Zhan, L.; Xu, Z. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 2020, 255, 120064. [Google Scholar] [CrossRef]
- Lin, P.; Jin, P.; Hong, J.; Wang, Z. Battery voltage and state of power prediction based on an improved novel polarization voltage model. Energy Rep. 2020, 6, 2299–2308. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. A review of different electric equivalent circuit models and parameter identification methods of lithium-ion batteries. ECS Trans. 2018, 87, 23–37. [Google Scholar] [CrossRef]
- Diab, Y.; Venet, P.; Gualous, H.; Rojat, G. Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans. Power Electron. 2009, 24, 510–517. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Hu, Q.; Zhang, L.; Wang, Z. Modeling the dynamic self-discharge effects of supercapacitors using a controlled current source based ladder equivalent circuit. J. Energy Storage 2020, 30, 101473. [Google Scholar] [CrossRef]
- Yassine, M.; Fabris, D. Performance of commercially available supercapacitors. Energies 2017, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Navarro, G.; Nájera, J.; Torres, J.; Blanco, M.; Santos, M.; Lafoz, M. Development and experimental validation of a supercapacitor frequency domain model for industrial energy applications considering dynamic behaviour at high frequencies. Energies 2020, 13, 1156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wan, X. A wind-hydrogen energy storage system model for massive wind energy curtailment. Int. J. Hydrogen Energy 2014, 39, 1243–1252. [Google Scholar] [CrossRef]
- Ray, A.; Korkut, D.; Saruhan, B. Efficient flexible all-solid supercapacitors with direct sputter-grown needle-like mn/mnox@graphite-foil electrodes and ppc-embedded ionic electrolytes. Nanomaterials 2020, 10, 1768. [Google Scholar] [CrossRef]
- Morin, B. Hybridation d’une pile à Combustible par des Supercondensateurs: Vers une Solution Passive et Directe, Ph.D. Thesis, Institut National Polytechnique de Toulouse-INPT, Toulouse, France, 2013. Available online: https://tel.archives-ouvertes.fr/tel-00821123 (accessed on 21 May 2021).
- Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 2006, 51, 5746–5753. [Google Scholar] [CrossRef]
- Weber, A.Z. Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2008, 155, B521. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, G.; Sundmacher, K. H2 permeation through N117 and its consumption by IrOx in PEM water electrolyzers. Electrochem. Commun. 2019, 108, 106578. [Google Scholar] [CrossRef]
- Li, A.; Pelissier, S.; Venet, P.; Gyan, P. Fast Characterization Method for Modeling Battery Relaxation Voltage. Batteries 2016, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Zhao, H.; Li, P. Self-discharge rates in cells have a critical effect on the cycle life of parallel lithium-ion batteries. RSC Adv. 2018, 8, 30802. [Google Scholar] [CrossRef] [Green Version]
- Hinaje, M.; Raël, S.; Noiying, P.; Nguyen, D.A.; Davat, B. An equivalent electrical circuit model of proton exchange membrane fuel cells based on mathematical modelling. Energies 2012, 5, 2724–2744. [Google Scholar] [CrossRef] [Green Version]
- Tijani, A.S.; Rahim, A.H.A. Numerical modeling the effect of operating variables on Faraday efficiency in PEM electrolyzer. Procedia Technol. 2016, 26, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D.; Saldivar, B. Cell voltage static-dynamic modeling of a pem electrolyzer based on adaptive parameters: Development and experimental validation. Renew. Energy 2021, 163, 1508–1522. [Google Scholar] [CrossRef]
- Satpathy, S.; Dhar, M.; Bhattacharyya, B.K. Why supercapacitor follows complex time-dependent power law (tα) and does not obey normal exponential (exp[-t/(RC)]) rule? J. Energy Storage 2020, 31, 101606. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Shan, X.-Y.; Wang, D.-W.; Cheng, H.-M.; Li, F. Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency. J. Energy Chem. 2019, 38, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Johny, M.A.; Neelanchery, M.; Ansari, S. Self-discharge and voltage recovery in graphene supercapacitors. IEEE Trans. Power Electron. 2018, 33, 10410–10418. [Google Scholar] [CrossRef]
- Guida, V.; Guilbert, D.; Vitale, G.; Douine, B. Design and realization of a stacked interleaved dc–dc step-down converter for pem water electrolysis with improved current control. Fuel Cells 2020, 20, 307–315. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Rated electrical power | 400 | W |
Stack voltage operating range | 4.2–8 | V |
Stack current range | 0–50 | A |
Operating temperature range | 288.15–313.15 | K |
Hydrogen outlet pressure | 10.5 | bar |
Cells number | 3 | - |
Active area section | 50 | |
Hydrogen flow rate range at STP (Standard Temperature and Pressure, 20 C and 1 bar) | 0–1 | SLPM (Standard Liter Per Minute) |
Test | Length of the OCV Depolarization |
---|---|
10–0 A (Figure 3) | 3950 s |
20–0 A (Figure 4) | 3350 s |
30–0 A (Figure 5) | 3150 s |
35–0 A (Figure 6) | 2850 s |
Parameter | Value | Unit |
---|---|---|
0.21 | V | |
800 | F | |
800 | F | |
180 | s | |
2558.9 | s | |
5.5719 | V | |
V | ||
r | −4.1226 | (-) |
K | 0.3941 | V |
Input Current | ||
---|---|---|
10–0 A | 3.55% | 0.0528 V |
20–0 A | 4.43% | 0.0489 V |
30–0 A | 4.70% | 0.0745 V |
35–0 A | 5.69% | 0.0648 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D.; Saldivar, B. Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes. Membranes 2021, 11, 379. https://doi.org/10.3390/membranes11060379
Hernández-Gómez Á, Ramirez V, Guilbert D, Saldivar B. Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes. Membranes. 2021; 11(6):379. https://doi.org/10.3390/membranes11060379
Chicago/Turabian StyleHernández-Gómez, Ángel, Victor Ramirez, Damien Guilbert, and Belem Saldivar. 2021. "Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes" Membranes 11, no. 6: 379. https://doi.org/10.3390/membranes11060379