Membranes for Water and Wastewater Treatment
Funding
Conflicts of Interest
References
- Zhang, C.; Zhang, W.; Wang, Y. Diffusion dialysis for acid recovery from acidic waste solutions: Anion exchange membranes and technology integration. Membranes 2020, 10, 169. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Tela, S.; Silva, A.F.; Oliveira, M.; Bento-Silva, A.; Bronze, M.R.; Crespo, M.T.B.; Crespo, J.G.; Nunes, M.; Pereira, V.J. Occurrence of antibiotics, antibiotic resistance genes and viral genomes in wastewater effluents and their treatment by a pilot scale nanofiltration unit. Membranes 2021, 11, 9. [Google Scholar] [CrossRef]
- Mitko, K.; Laskowska, E.; Turek, M.; Dydo, P.; Piotrowski, K. Scaling risk assessment in nanofiltration of mine waters. Membranes 2020, 10, 288. [Google Scholar] [CrossRef]
- Marecka-Migacz, A.; Mitkowski, P.T.; Nędzarek, A.; Różański, J.; Szaferski, W. Effect of pH on total volume membrane charge density in the nanofiltration of aqueous solutions of nitrate salts of heavy metals. Membranes 2020, 10, 235. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; León, G.; Gómez, M.; Murcia, M.D.; Gómez, E.; Macario, J.A. Removal of different dye solutions: A comparison study using a polyamide NF membrane. Membranes 2020, 10, 408. [Google Scholar] [CrossRef]
- Álvarez, J.R.; Antón, F.E.; Álvarez-García, S.; Luque, S. Treatment of aqueous effluents from steel manufacturing with high thiocyanate concentration by reverse osmosis. Membranes 2020, 10, 437. [Google Scholar] [CrossRef]
- Bottino, A.; Capannelli, G.; Comite, A.; Costa, C.; Firpo, R.; Jezowska, A.; Pagliero, M. Treatment of olive mill wastewater through integrated pressure-driven membrane processes. Membranes 2020, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.R.S.; Lora-García, J.; López-Pérez, M.-F.; Santafé-Moros, A.; Gozálvez-Zafrilla, J.M. Operating conditions optimization via the taguchi method to remove colloidal substances from recycled paper and cardboard production wastewater. Membranes 2020, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, Z.; Liang, Z.; Hou, X.; Li, Z.; Mu, D.; Ge, C.; Zhang, C.; Jin, C. Long-term investigation into the membrane fouling behavior in anaerobic membrane bioreactors for municipal wastewater treatment operated at two different temperatures. Membranes 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Tabraiz, S.; Shamurad, B.; Petropoulos, E.; Charlton, A.; Mohiudin, O.; Danish Khan, M.; Ekwenna, E.; Sallis, P. Diversity of acyl homoserine lactone molecules in anaerobic membrane bioreactors treating sewage at psychrophilic temperatures. Membranes 2020, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xiao, K.; Yu, J.; Huang, B.; Wang, X.; Liang, S.; Wei, C.; Wen, X.; Huang, X. A simple method to identify the dominant fouling mechanisms during membrane filtration based on piecewise multiple linear regression. Membranes 2020, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Gu, H.; Xiao, K.; Qu, F.; Yu, H.; Wei, C. Fouling mechanisms analysis via combined fouling models for surface water ultrafiltration process. Membranes 2020, 10, 149. [Google Scholar] [CrossRef]
- Omir, A.; Satayeva, A.; Chinakulova, A.; Kamal, A.; Kim, J.; Inglezakis, V.J.; Arkhangelsky, E. Behaviour of aquaporin forward osmosis flat sheet membranes during the concentration of calcium-containing liquids. Membranes 2020, 10, 108. [Google Scholar] [CrossRef]
- Proner, M.C.; Ramalho Marques, I.; Ambrosi, A.; Rezzadori, K.; da Costa, C.; Zin, G.; Tres, M.V.; Di Luccio, M. Impact of MWCO and dopamine/polyethyleneimine concentrations on surface properties and filtration performance of modified membranes. Membranes 2020, 10, 239. [Google Scholar] [CrossRef]
- Han, H.; Dai, R.; Wang, Z. Fabrication of high-performance thin-film composite nanofiltration membrane by dynamic calcium-carboxyl intra-bridging during post-treatment. Membranes 2020, 10, 137. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Shinde, D.B.; Sheng, G.; Lu, D.; Li, P.; Lai, Z. Tuning the surface structure of polyamide membranes using porous carbon nitride nanoparticles for high-performance seawater Desalination. Membranes 2020, 10, 163. [Google Scholar] [CrossRef]
- Nady, N.; Salem, N.; Amer, R.; El-Shazly, A.; Kandil, S.H.; Hassouna, M.S.E.-D. Comparison between a conventional anti-biofouling compound and a novel modified low-fouling polyethersulfone ultrafiltration membrane: Bacterial anti-attachment, water quality and productivity. Membranes 2020, 10, 227. [Google Scholar] [CrossRef]
- Saiful, S.; Ajrina, M.; Wibisono, Y.; Marlina, M. Development of chitosan/starch-based forward osmosis water filtration bags for emergency water supply. Membranes 2020, 10, 414. [Google Scholar] [CrossRef]
- Nakayama, R.-i.; Katsumata, K.; Niwa, Y.; Namiki, N. Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. Membranes 2020, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V.I.; Chernyak, A.V.; Golubenko, D.V.; Tverskoy, V.A.; Lochin, G.A.; Odjigaeva, E.S.; Yaroslavtsev, A.B. Hydration and diffusion of H+, Li+, Na+, Cs+ ions in cation-exchange membranes based on polyethylene- and sulfonated-grafted polystyrene studied by NMR technique and Ionic conductivity Measurements. Membranes 2020, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy Erol, H.B.; Hestekin, C.N.; Hestekin, J.A. Effects of resin chemistries on the selective removal of industrially relevant metal ions using wafer-enhanced electrodeionization. Membranes 2021, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- León, G.; Hidalgo, A.M.; Miguel, B.; Guzmán, M.A. Pertraction of Co(II) through novel ultrasound prepared supported liquid membranes containing D2EHPA. Optimization and transport parameters. Membranes 2020, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Lin, Y.; Qu, H.; Zhang, J.; Zheng, X.; Tang, Y. Technical and economic evaluation of WWTP renovation based on applying ultrafiltration membrane. Membranes 2020, 10, 180. [Google Scholar] [CrossRef] [PubMed]
Numbers and Type of Articles | Fields | Industrial Process | Type of Membrane Process | Model | References |
---|---|---|---|---|---|
Review (1) | Diffusion dialysis | Acidic waste solution | Anion Exchange | - | [1] |
Antibiotics | NF | - | [2] | ||
Mine | NF | - | [3] | ||
Nitrate salts and heavy metals | NF | Donnan–Steric partitioning model | [4] | ||
Dyes | NF | Spiegler–Kedem–Katchalsky | [5] | ||
Steel | RO | Solution–Diffusion | [6] | ||
Olive mill | MF +RO | - | [7] | ||
Recycler paper and cardboard | UF | - | [8] | ||
Municipal wastewater | AnMBR | - | [9] | ||
Sewage | AnMBR | - | [10] | ||
Fouling | MF + UF | Semiempirical Multiple Linear Regression | [11] | ||
Surface water | UF | Combined models | [12] | ||
Aquaporin | FO | - | [13] | ||
Dopamine | UF | - | [14] | ||
Ca2+ | NF/RO | - | [15] | ||
Chitosan+ alkali | - | [16] | |||
Chlorination pretreatment | UF | - | [17] | ||
Chitosan | FO | - | [18] | ||
Nanoparticles | RO | - | [19] | ||
Resins | Ion Exchange | - | [20,21] | ||
Liquid membrane | Liquid Membrane | - | [22] | ||
Economic study | WWT plant | UF | - | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, A.M.; Murcia, M.D. Membranes for Water and Wastewater Treatment. Membranes 2021, 11, 295. https://doi.org/10.3390/membranes11040295
Hidalgo AM, Murcia MD. Membranes for Water and Wastewater Treatment. Membranes. 2021; 11(4):295. https://doi.org/10.3390/membranes11040295
Chicago/Turabian StyleHidalgo, Asunción María, and María Dolores Murcia. 2021. "Membranes for Water and Wastewater Treatment" Membranes 11, no. 4: 295. https://doi.org/10.3390/membranes11040295