You are currently viewing a new version of our website. To view the old version click .
Brain Sciences
  • Review
  • Open Access

11 May 2018

Informed Consent Decision-Making in Deep Brain Stimulation

,
,
,
and
1
Department of Human Neurosciences (Former Department of Neurology and Psychiatry), “Sapienza” University of Rome, 00185 Rome, Italy
2
Department of Mental Health, ASL Roma 5, 00034 Colleferro, Italy
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Update on Deep Brain Stimulation: Technical Nuances and New Indications

Abstract

Deep brain stimulation (DBS) has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia), in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases.

1. Introduction

In the last two decades, a growing interest emerged for deep brain stimulation (DBS) in the treatment of movement and psychiatric disorders [1,2,3]. Despite significant advances in DBS use, surgical procedures, and outcomes, there is a substantial lack of data concerning the decision-making ability of patients undergoing DBS [4].
Different levels of evidence have highlighted the possible benefits of DBS in patients with Parkinson’s disease (PD) [5,6], essential tremor (ET) [7,8], and dystonia [9,10,11,12] who experience serious complications, or when standard pharmacological treatments were inefficacious. DBS is an accepted treatment for refractory obsessive-compulsive disorder (OCD) [13], while still limited data from research trials or case reports showed possible efficacy for treatment-resistant major depressive disorder (MDD), Tourette syndrome (TS), and impulse control disorders such as addiction, anorexia nervosa, schizophrenia, and anxiety disorders [3].
DBS received the U.S. Food and Drug Administration (FDA) approval for the treatment of patients with PD (2002) and ET (1997), as well as humanitarian device exemption for dystonia (2003) and treatment-resistant OCD (2009) [14]. The specific risk and benefit profile of DBS for each disease in which it has been used is currently studied and debated. It must be underlined that DBS for movement disorders has involved significantly more patients than psychiatric disorders, with a rate of accrual of more than 10,000 per year [1].
Both improvement and worsening of cognitive and affective symptoms, as well as impulse control disorders have been reported post-DBS [1]; however, most of the evidence indicates that DBS is beneficial particularly in movement disorders, with a minority of reports indicating the worsening of symptoms. Issues in postoperative management and rehabilitation programs also exist, and should be appropriately evaluated in the acquisition of consent to the intervention [15,16]. Postoperative management problems might also present in successfully treated patients, including those presenting a “burden of normality” syndrome, a term that refers to the possible patients’ difficulty to adapt from being chronically ill to a symptoms-free status [17]. Adaptive DBS has been recently proposed to widen the DBS therapeutic window and limit side effects; nonetheless, there is scarce evidence concerning its long-term efficacy and safety profile [18].
Candidate patients might present difficulty in properly understanding and evaluating information pertaining to the surgical procedure, including possible short and long-term consequences, as well as the experimental nature of the research in those disorders in which DBS has not yet been approved [19]. The tendency to overlook the distinction between research and ordinary treatment, a process defined as therapeutic misconception [20], is of particular importance for DBS in psychiatric disorders in view of the experimental nature of DBS in such diseases. Therapeutic misconception has been reported in patients with mood disorders undergoing DBS [21], but it has not been evaluated in other disorders, although depressive symptoms are frequently reported.
Patients with a long history of illness and characterized by poor response to previous treatments, may present frustration, alteration, of expectation in an optimistic or negative way, which may contribute in altering their mental capacity to adequately consent to treatment or clinical research [22]. Affective symptoms associated with the underlying pathology such as anxiety and mood alterations could also compromise patients’ treatment decision-making capacity [23].
In the present work, we will first synthetically discuss the informed consent doctrine with a specific focus on patients’ decision-making capacity. In the second section, we will focus on the principal disorders in which DBS has been used by synthetically reviewing existing data focusing on indications—possibly associated cognitive and affective disorders—which might impact in patients’ decision-making capacity. We will also underline the possible benefits and risks of such information being a prerequisite for the acquisition of a valid informed consent.

4. Conclusions

Data concerning DBS in different diseases are characterized by a heterogeneity of the levels of evidence of safety and efficacy, with more information existing for movement disorders, especially PD. Whereas in the case of psychiatric indications, there is much less robust evidence. DBS in psychiatric disorders applies only to therapeutic research; the research protocols should accordingly provide an adequate evaluation of the ability of patients to provide a valid consent to clinical research. The hypothesis of the possible ineffectiveness of DBS, which is greater in the case of research protocols, including the possibility of necessity of explanting the device, should be part of the informed consent to DBS [92].
Evaluations of the capacity to consent to treatment or clinical research could be carried out with reliable procedures and evaluation tools, considering the existence of cognitive impairments and psychiatric symptoms that could be associated with decision-making incapacity. Considering that the existence of therapeutic misconception in DBS for MDD has been demonstrated, its presence can also be hypothesized in other disorders in which experimentation is carried out, and should therefore be systematically evaluated. The possible development of post-DBS psychiatric symptoms with a likely impact on patients’ autonomy, especially hypomania, which emerged in several studies as well as alterations in executive functions and working memory, should be carefully monitored.
In conclusion, the hypothesis of a possible DBS influence on patients’ decisional autonomy deserves further empirical research. Overall, there is a significant lack of data on the ability of patients with DBS to decide whether to be treated or included in research protocols, which is an important limitation and a starting point for future studies.

Funding

This research received no external funding

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Obeso, J.A.; Stamelou, M.; Goetz, C.G.; Poewe, W.; Lang, A.E.; Weintraub, D.; Burn, D.; Halliday, G.M.; Bezard, E.; Przedborski, S.; et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017, 32, 1264–1310. [Google Scholar] [CrossRef] [PubMed]
  2. Vidailhet, M.; Vercueil, L.; Houeto, J.L.; Krystkowiak, P.; Benabid, A.L.; Cornu, P.; Lagrange, C.; Tézenas du Montcel, S.; Dormont, D.; Grand, S.; et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N. Engl. J. Med. 2005, 352, 459–467. [Google Scholar] [CrossRef] [PubMed]
  3. Graat, I.; Figee, M.; Denys, D. The application of deep brain stimulation in the treatment of psychiatric disorders. Int. Rev. Psychiatry 2017, 29, 178–190. [Google Scholar] [CrossRef] [PubMed]
  4. Mandarelli, G.; Moscati, F.M.; Venturini, P.; Ferracuti, S. Informed consent and neuromodulation techniques for psychiatric purposes: An introduction. Riv. Psichiatr. 2013, 48, 285–292. [Google Scholar] [CrossRef] [PubMed]
  5. Reinacher, P.C.; Amtage, F.; Rijntjes, M.; Piroth, T.; Prokop, T.; Jenkner, C.; Kätzler, J.; Coenen, V.A. One Pass Thalamic and Subthalamic Stimulation for Patients with Tremor-Dominant Idiopathic Parkinson Syndrome (OPINION): Protocol for a Randomized, Active-Controlled, Double-Blinded Pilot Trial. JMIR Res. Protoc. 2018, 7, e36. [Google Scholar] [CrossRef] [PubMed]
  6. Mansouri, A.; Taslimi, S.; Badhiwala, J.H.; Witiw, C.D.; Nassiri, F.; Odekerken, V.J.J.; De Bie, R.M.A.; Kalia, S.K.; Hodaie, M.; Munhoz, R.P.; et al. Deep brain stimulation for Parkinson’s disease: Meta-analysis of results of randomized trials at varying lengths of follow-up. J. Neurosurg. 2017, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
  7. Flora, E.D.; Perera, C.L.; Cameron, A.L.; Maddern, G.J. Deep brain stimulation for essential tremor: A systematic review. Mov. Disord. 2010, 25, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
  8. Nazzaro, J.M.; Lyons, K.E.; Pahwa, R. Deep brain stimulation for essential tremor. Handb. Clin. Neurol. 2013, 116, 155–166. [Google Scholar] [CrossRef] [PubMed]
  9. Ostrem, J.L.; San Luciano, M.; Dodenhoff, K.A.; Ziman, N.; Markun, L.C.; Racine, C.A.; de Hemptinne, C.; Volz, M.M.; Heath, S.L.; Starr, P.A. Subthalamic nucleus deep brain stimulation in isolated dystonia: A 3-year follow-up study. Neurology 2017, 88, 25–35. [Google Scholar] [CrossRef] [PubMed]
  10. Volkmann, J.; Wolters, A.; Kupsch, A.; Müller, J.; Kühn, A.A.; Schneider, G.H.; Poewe, W.; Hering, S.; Eisner, W.; Müller, J.U.; et al. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol. 2012, 11, 1029–1038. [Google Scholar] [CrossRef]
  11. Moro, E.; Gross, R.E.; Krauss, J.K. What’s new in surgical treatment for dystonia? Mov. Disord. 2013, 28, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
  12. Mehdorn, H.M. Deep brain stimulation for dystonia: Review of the literature. J. Neurosurg. Sci. 2016, 60, 199–210. [Google Scholar] [PubMed]
  13. Moon, W.; Kim, S.N.; Park, S.; Paek, S.H.; Kwon, J.S. The cost-effectiveness of deep brain stimulation for patients with treatment-resistant obsessive-compulsive disorder. Medicine 2017, 96, e7397. [Google Scholar] [CrossRef] [PubMed]
  14. Youngerman, B.E.; Chan, A.K.; Mikell, C.B.; McKhann, G.M.; Sheth, S.A. A decade of emerging indications: Deep brain stimulation in the United States. J. Neurosurg. 2016, 125, 461–471. [Google Scholar] [CrossRef] [PubMed]
  15. Deuschl, G.; Herzog, J.; Kleiner-Fisman, G.; Kubu, C.; Lozano, A.M.; Lyons, K.E.; Rodriguez-Oroz, M.C.; Tamma, F.; Tröster, A.I.; Vitek, J.L.; et al. Deep brain stimulation: Postoperative issues. Mov. Disord. 2006, 21, S219–S237. [Google Scholar] [CrossRef] [PubMed]
  16. Allert, N.; Cheeran, B.; Deuschl, G.; Barbe, M.T.; Csoti, I.; Ebke, M.; Glaser, M.; Kang, J.S.; Kelm, S.; Krack, P.; et al. Postoperative rehabilitation after deep brain stimulation surgery for movement disorders. Clin. Neurophysiol. 2018, 129, 592–601. [Google Scholar] [CrossRef] [PubMed]
  17. Gilbert, F. The burden of normality: From ‘chronically ill’ to ‘symptom free’. New ethical challenges for deep brain stimulation postoperative treatment. J. Med. Ethics 2012, 38, 408–412. [Google Scholar] [CrossRef] [PubMed]
  18. Meidahl, A.C.; Tinkhauser, G.; Herz, D.M.; Cagnan, H.; Debarros, J.; Brown, P. Adaptive Deep Brain Stimulation for Movement Disorders: The Long Road to Clinical Therapy. Mov. Disord. 2017, 32, 810–819. [Google Scholar] [CrossRef] [PubMed]
  19. Parmigiani, G.; Mandarelli, G.; Dacquino, C.; Pompili, P.; Lelli Chiesa, G.; Ferracuti, S. Decisional Capacity to Consent to Clinical Research Involving Placebo in Psychiatric Patients. J. Forensic Sci. 2016, 61, 388–393. [Google Scholar] [CrossRef] [PubMed]
  20. Lidz, C.W.; Appelbaum, P.S. The therapeutic misconception: Problems and solutions. Med. Care 2002, 40, V55–V63. [Google Scholar] [CrossRef] [PubMed]
  21. Fisher, C.E.; Dunn, L.B.; Christopher, P.P.; Holtzheimer, P.E.; Leykin, Y.; Mayberg, H.S.; Lisanby, S.H.; Appelbaum, P.S. The ethics of research on deep brain stimulation for depression: Decisional capacity and therapeutic misconception. Ann. N. Y. Acad. Sci. 2012, 1265, 69–79. [Google Scholar] [CrossRef] [PubMed]
  22. Bell, E.; Maxwell, B.; McAndrews, M.P.; Sadikot, A.; Racine, E. Hope and patients’ expectations in deep brain stimulation: Healthcare providers’ perspectives and approaches. J. Clin. Ethics 2010, 21, 112–124. [Google Scholar] [PubMed]
  23. Appelbaum, P.S. Clinical practice. Assessment of patients’ competence to consent to treatment. N. Engl. J. Med. 2007, 357, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
  24. Berg, J.W.; Appelbaum, P.S.; Lidz, C.W.; Parker, L. Informed Consent: Legal Theory and Clinical Practice, 2nd ed.; Oxford University Press: Fair Lawn, NJ, USA, 2001; ISBN 0195126777, 9780195126778. [Google Scholar]
  25. Dunn, L.B.; Nowrangi, M.A.; Palmer, B.W.; Jeste, D.V.; Saks, E.R. Assessing decisional capacity for clinical research or treatment: A review of instruments. Am. J. Psychiatry 2006, 163, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
  26. Appelbaum, P.S.; Grisso, T. MacCAT-CR: MacArthur Competence Assessment Tool for Clinical Research; Professional Resource Press: Sarasota, FL, USA, 2001; ISBN 9781568870717. [Google Scholar]
  27. Grisso, T.; Appelbaum, P.S.; Hill-Fotouhi, C. The MacCAT-T: A clinical tool to assess patients’ capacities to make treatment decisions. Psychiatr. Serv. 1997, 48, 1415–1419. [Google Scholar] [PubMed]
  28. Raymont, V.; Bingley, W.; Buchanan, A.; David, A.S.; Hayward, P.; Wessely, S.; Hotopf, M. Prevalence of mental incapacity in medical inpatients and associated risk factors: Cross-sectional study. Lancet 2004, 364, 1421–1427. [Google Scholar] [CrossRef]
  29. Carpenter, W.T., Jr.; Gold, J.M.; Lahti, A.C.; Queern, C.A.; Conley, R.R.; Bartko, J.J.; Kovnick, J.; Appelbaum, P.S. Decisional capacity for informed consent in schizophrenia research. Arch. Gen. Psychiatry 2000, 57, 533–538. [Google Scholar] [CrossRef] [PubMed]
  30. Dunn, L.B.; Palmer, B.W.; Appelbaum, P.S.; Saks, E.R.; Aarons, G.A.; Jeste, D.V. Prevalence and correlates of adequate performance on a measure of abilities related to decisional capacity: Differences among three standards for the MacCAT-CR in patients with schizophrenia. Schizophr. Res. 2007, 89, 110–118. [Google Scholar] [CrossRef] [PubMed]
  31. Mandarelli, G.; Parmigiani, G.; Tarsitani, L.; Frati, P.; Biondi, M.; Ferracuti, S. The relationship between executive functions and capacity to consent to treatment in acute psychiatric hospitalization. J. Empir. Res. Hum. Res. Ethics 2012, 7, 63–70. [Google Scholar] [CrossRef] [PubMed]
  32. Mandarelli, G.; Carabellese, F.; Parmigiani, G.; Bernardini, F.; Pauselli, L.; Quartesan, R.; Catanesi, R.; Ferracuti, S. Treatment decision-making capacity in non-consensual psychiatric treatment: A multicentre study. Epidemiol. Psychiatr. Sci. 2017, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
  33. Moelter, S.T.; Weintraub, D.; Mace, L.; Cary, M.; Sullo, E.; Xie, S.X.; Karlawish, J. Research consent capacity varies with executive function and memory in Parkinson’s disease. Mov. Disord. 2016, 31, 414–417. [Google Scholar] [CrossRef] [PubMed]
  34. Cairns, R.; Maddock, C.; Buchanan, A.; David, A.S.; Hayward, P.; Richardson, G.; Szmukler, G.; Hotopf, M. Prevalence and predictors of mental incapacity in psychiatric in-patients. Br. J. Psychiatry 2005, 187, 379–385. [Google Scholar] [CrossRef] [PubMed]
  35. Howe, V.; Foister, K.; Jenkins, K.; Skene, L.; Copolov, D.; Keks, N. Competence to give informed consent in acute psychosis is associated with symptoms rather than diagnosis. Schizophr. Res. 2005, 77, 211–214. [Google Scholar] [CrossRef] [PubMed]
  36. Palmer, B.W.; Jeste, D.V. Relationship of individual cognitive abilities to specific components of decisional capacity among middle-aged and older patients with schizophrenia. Schizophr. Bull. 2006, 32, 98–106. [Google Scholar] [CrossRef] [PubMed]
  37. Jeste, D.V.; Palmer, B.W.; Appelbaum, P.S.; Golshan, S.; Glorioso, D.; Dunn, L.B.; Kim, K.; Meeks, T.; Kraemer, H.C. A new brief instrument for assessing decisional capacity for clinical research. Arch. Gen. Psychiatry 2007, 64, 966–974. [Google Scholar] [CrossRef] [PubMed]
  38. Hong, J.Y.; Lee, Y.; Sunwoo, M.K.; Sohn, Y.H.; Lee, P.H. Subjective Cognitive Complaints and Objective Cognitive Impairment in Parkinson’s Disease. J. Clin. Neurol. 2018, 14, 16–21. [Google Scholar] [CrossRef] [PubMed]
  39. Papagno, C.; Trojano, L. Cognitive and behavioral disorders in Parkinson’s disease: An update. I: Cognitive impairments. Neurol. Sci. 2018, 39, 215–223. [Google Scholar] [CrossRef] [PubMed]
  40. Goodarzi, Z.; Mrklas, K.J.; Roberts, D.J.; Jette, N.; Pringsheim, T.; Holroyd-Leduc, J. Detecting depression in Parkinson disease: A systematic review and meta-analysis. Neurology 2016, 87, 426–437. [Google Scholar] [CrossRef] [PubMed]
  41. Stamelou, M.; Edwards, M.J.; Hallett, M.; Bhatia, K.P. The non-motor syndrome of primary dystonia: Clinical and pathophysiological implications. Brain 2012, 135, 1668–1681. [Google Scholar] [CrossRef] [PubMed]
  42. Fabbrini, G.; Berardelli, I.; Moretti, G.; Pasquini, M.; Bloise, M.; Colosimo, C.; Biondi, M.; Berardelli, A. Psychiatric disorders in adult-onset focal dystonia: A case-control study. Mov. Disord. 2010, 25, 459–465. [Google Scholar] [CrossRef] [PubMed]
  43. Yang, J.; Song, W.; Wei, Q.; Ou, R.; Cao, B.; Liu, W.; Shao, N.; Shang, H.F. Screening for Cognitive Impairments in Primary Blepharospasm. PLoS ONE 2016, 11, e0160867. [Google Scholar] [CrossRef] [PubMed]
  44. Jahanshahi, M. Neuropsychological and Neuropsychiatric Features of Idiopathic and DYT1 Dystonia and the Impact of Medical and Surgical treatment. Arch. Clin. Neuropsychol. 2017, 32, 888–905. [Google Scholar] [CrossRef] [PubMed]
  45. Jahanshahi, M.; Torkamani, M. The cognitive features of idiopathic and DYT1dystonia. Mov. Disord. 2017, 32, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
  46. Romano, R.; Bertolino, A.; Gigante, A.; Martino, D.; Livrea, P.; Defazio, G. Impaired cognitive functions in adult-onset primary cranial cervical dystonia. Parkinsonism Relat. Disord. 2014, 20, 162–165. [Google Scholar] [CrossRef] [PubMed]
  47. Benito-León, J.; Mato-Abad, V.; Louis, E.D.; Hernández-Tamames, J.A.; Álvarez-Linera, J.; Bermejo-Pareja, F.; Domingo-Santos, Á.; Collado, L.; Romero, J.P. White matter microstructural changes are related to cognitive dysfunction in essential tremor. Sci. Rep. 2017, 7, 2978. [Google Scholar] [CrossRef] [PubMed]
  48. Fabbrini, G.; Berardelli, I.; Falla, M.; Moretti, G.; Pasquini, M.; Altieri, M.; Defazio, G.; Biondi, M.; Berardelli, A. Psychiatric disorders in patients with essential tremor. Parkinsonism Relat. Disord. 2012, 18, 971–973. [Google Scholar] [CrossRef] [PubMed]
  49. Smeltere, L.; Kuzņecovs, V.; Erts, R. Depression and social phobia in essential tremor and Parkinson’s disease. Brain Behav. 2017, 7, e00781. [Google Scholar] [CrossRef] [PubMed]
  50. Janicki, S.C.; Cosentino, S.; Louis, E.D. The cognitive side of essential tremor: What are the therapeutic implications? Ther. Adv. Neurol. Disord. 2013, 6, 353–368. [Google Scholar] [CrossRef] [PubMed]
  51. De Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
  52. Kurtis, M.M.; Rajah, T.; Delgado, L.F.; Dafsari, H.S. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: A critical review of the current evidence. NPJ Parkinsons Dis. 2017, 3, 16024. [Google Scholar] [CrossRef] [PubMed]
  53. Schermer, M. Ethical issues in deep brain stimulation. Front. Integr. Neurosci. 2011, 5, 17. [Google Scholar] [CrossRef] [PubMed]
  54. Wu, B.; Han, L.; Sun, B.M.; Hu, X.W.; Wang, X.P. Influence of deep brain stimulation of the subthalamic nucleus on cognitive function in patients with Parkinson’s disease. Neurosci. Bull. 2014, 30, 153–161. [Google Scholar] [CrossRef] [PubMed]
  55. Parsons, T.D.; Rogers, S.A.; Braaten, A.J.; Woods, S.P.; Tröster, A.I. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: A meta-analysis. Lancet Neurol. 2006, 5, 578–588. [Google Scholar] [CrossRef]
  56. Gratwicke, J.; Zrinzo, L.; Kahan, J.; Peters, A.; Beigi, M.; Akram, H.; Hyam, J.; Oswal, A.; Day, B.; Mancini, L.; et al. Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 169–178. [Google Scholar] [CrossRef] [PubMed]
  57. Broen, M.P.; Narayen, N.E.; Kuijf, M.L.; Dissanayaka, N.N.; Leentjens, A.F. Prevalence of anxiety in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2016, 31, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
  58. Marshall, T.; Pugh, A.; Fairchild, A.; Hass, S. Patient Preferences for Device-Aided Treatments Indicated for Advanced Parkinson Disease. Value Health 2017, 20, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
  59. Albanese, A.; Bhatia, K.; Bressman, S.B.; Delong, M.R.; Fahn, S.; Fung, V.S.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef] [PubMed]
  60. Balint, B.; Bhatia, K.P. Dystonia: An update on phenomenology, classification, pathogenesis and treatment. Curr. Opin. Neurol. 2014, 27, 468–476. [Google Scholar] [CrossRef] [PubMed]
  61. Jahanshahi, M. Behavioural and psychiatric manifestations in dystonia. In Behavioural Neurology of Movement Disorders, 2nd ed.; Anderson, K., Weiner, W., Lang, A., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 291–319. ISBN 978-0-781-75169-8. [Google Scholar]
  62. Houeto, J.L.; Yelnik, J.; Bardinet, E.; Vercueil, L.; Krystkowiak, P.; Mesnage, V.; Lagrange, C.; Dormont, D.; Le Bas, J.F.; Pruvo, J.P.; et al. Acute deep-brain stimulation of the internal and external globus pallidus in primary dystonia: Functional mapping of the pallidum. Arch. Neurol. 2007, 64, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
  63. Kupsch, A.; Benecke, R.; Müller, J.; Trottenberg, T.; Schneider, G.H.; Poewe, W.; Eisner, W.; Wolters, A.; Müller, J.U.; Deuschl, G.; et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N. Engl. J. Med. 2006, 355, 1978–1990. [Google Scholar] [CrossRef] [PubMed]
  64. De Gusmao, C.M.; Pollak, L.E.; Sharma, N. Neuropsychological and psychiatric outcome of GPi-deep brain stimulation in dystonia. Brain Stimul. 2017, 10, 994–996. [Google Scholar] [CrossRef] [PubMed]
  65. Favilla, C.G.; Ullman, D.; Wagle Shukla, A.; Foote, K.D.; Jacobson, C.E.; Okun, M.S. Worsening essential tremor following deep brain stimulation: Disease progression versus tolerance. Brain 2012, 135, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
  66. Shih, L.C.; LaFaver, K.; Lim, C.; Papavassiliou, E.; Tarsy, D. Loss of benefit in VIM thalamic deep brain stimulation (DBS) for essential tremor (ET): How prevalent is it? Parkinsonism Relat. Disord. 2013, 19, 676–679. [Google Scholar] [CrossRef] [PubMed]
  67. Sydow, O.; Thobois, S.; Alesch, F.; Speelman, J.D. Multicentre European study of thalamic stimulation in essential tremor: A six year follow up. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
  68. Groppa, S.; Herzog, J.; Falk, D.; Riedel, C.; Deuschl, G.; Volkmann, J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain 2014, 137, 109–121. [Google Scholar] [CrossRef] [PubMed]
  69. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Press: Arlington, VA, USA, 2013; pp. 81–85. ISBN 9780890425541. [Google Scholar]
  70. Eapen, V.; Cavanna, A.E.; Robertson, M.M. Comorbidities, Social Impact, and Quality of Life in Tourette Syndrome. Front. Psychiatry 2016, 7, 97. [Google Scholar] [CrossRef] [PubMed]
  71. Roessner, V.; Plessen, K.J.; Rothenberger, A.; Ludolph, A.G.; Rizzo, R.; Skov, L.; Strand, G.; Stern, J.S.; Termine, C.; Hoekstra, P.J. ESSTS Guidelines Group. European clinical guidelines for Tourette syndrome and other tic disorders. Part II: Pharmacological treatment. Eur. Child Adolesc. Psychiatry 2011, 20, 173–196. [Google Scholar] [CrossRef] [PubMed]
  72. Martino, D.; Pringsheim, T.M. Tourette syndrome and other chronic tic disorders: An update on clinical management. Expert Rev. Neurother. 2018, 18, 125–137. [Google Scholar] [CrossRef] [PubMed]
  73. Müller-Vahl, K.R.; Cath, D.C.; Cavanna, A.E.; Dehning, S.; Porta, M.; Robertson, M.M.; Visser-Vandewalle, V. ESSTS Guidelines Group. European clinical guidelines for Tourette syndrome and other tic disorders. Part IV: Deep brain stimulation. Eur. Child Adolesc. Psychiatry 2011, 20, 209–217. [Google Scholar] [CrossRef] [PubMed]
  74. Martinez-Ramirez, D.; Jimenez-Shahed, J.; Leckman, J.F.; Porta, M.; Servello, D.; Meng, F.G.; Kuhn, J.; Huys, D.; Baldermann, J.C.; Foltynie, T.; et al. Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry. JAMA Neurol. 2018, 75, 353–359. [Google Scholar] [CrossRef] [PubMed]
  75. Akbarian-Tefaghi, L.; Zrinzo, L.; Foltynie, T. The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sci. 2016, 6, 35. [Google Scholar] [CrossRef] [PubMed]
  76. Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol. Psychiatry 2010, 15, 53–63. [Google Scholar] [CrossRef] [PubMed]
  77. Abramowitz, J.S.; Taylor, S.; McKay, D. Obsessive-compulsive disorder. Lancet 2009, 374, 491–499. [Google Scholar] [CrossRef]
  78. Denys, D. Pharmacotherapy of obsessive-compulsive disorder and obsessive-compulsive spectrum disorders. Psychiatr. Clin. N. Am. 2006, 29, 553–584. [Google Scholar] [CrossRef] [PubMed]
  79. Fins, J.J.; Mayberg, H.S.; Nuttin, B.; Kubu, C.S.; Galert, T.; Sturm, V.; Stoppenbrink, K.; Merkel, R.; Schlaepfer, T.E. Misuse of the FDA’s humanitarian device exemption in deep brain stimulation for obsessive-compulsive disorder. Health Aff. 2011, 30, 302–311. [Google Scholar] [CrossRef] [PubMed]
  80. Alonso, P.; Cuadras, D.; Gabriëls, L.; Denys, D.; Goodman, W.; Greenberg, B.D.; Jimenez-Ponce, F.; Kuhn, J.; Lenartz, D.; Mallet, L.; et al. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS ONE 2015, 10, e0133591. [Google Scholar] [CrossRef] [PubMed]
  81. Zhang, C.; Chen, Y.; Tian, S.; Wang, T.; Xie, Y.; Jin, H.; Lin, G.; Gong, H.; Zeljic, K.; Sun, B.; Yang, T.; Zhan, S. Effects of Anterior Capsulotomy on Decision Making in Patients with Refractory Obsessive-Compulsive Disorder. Front. Psychol. 2017, 8, 1814. [Google Scholar] [CrossRef] [PubMed]
  82. Sip, K.E.; Muratore, A.F.; Stern, E.R. Effects of context on risk taking and decision times in obsessive-compulsive disorder. J. Psychiatr. Res. 2016, 75, 82–90. [Google Scholar] [CrossRef] [PubMed]
  83. Abramovitch, A.; Abramowitz, J.S.; Mittelman, A. The neuropsychology of adult obsessive-compulsive disorder: A meta-analysis. Clin. Psychol. Rev. 2013, 33, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
  84. Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
  85. Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef] [PubMed]
  86. Beeker, T.; Schlaepfer, T.E.; Coenen, V.A. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS’ Potential to Restore It. Front. Integr. Neurosci. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed]
  87. Eitan, R.; Fontaine, D.; Benoît, M.; Giordana, C.; Darmon, N.; Israel, Z.; Linesky, E.; Arkadir, D.; Ben-Naim, S.; Iserlles, M.; et al. One year double blind study of high vs. low frequency subcallosal cingulate stimulation for depression. J. Psychiatr. Res. 2018, 96, 124–134. [Google Scholar] [CrossRef] [PubMed]
  88. Holtzheimer, P.E.; Husain, M.M.; Lisanby, S.H.; Taylor, S.F.; Whitworth, L.A.; McClintock, S.; Slavin, K.V.; Berman, J.; McKhann, G.M.; Patil, P.G.; et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: A multisite, randomised, sham-controlled trial. Lancet Psychiatry 2017, 4, 839–849. [Google Scholar] [CrossRef]
  89. Schlaepfer, T.E.; Bewernick, B.H. Deep brain stimulation for major depression. Handb. Clin. Neurol. 2013, 116, 235–243. [Google Scholar] [CrossRef] [PubMed]
  90. Christopher, P.P.; Leykin, Y.; Appelbaum, P.S.; Holtzheimer, P.E.; Mayberg, H.S.; Dunn, L.B. Enrolling in deep brain stimulation research for depression: Influences on potential subjects’ decision making. Depress. Anxiety 2012, 29, 139–146. [Google Scholar] [CrossRef] [PubMed]
  91. Leykin, Y.; Christopher, P.P.; Holtzheimer, P.E.; Appelbaum, P.S.; Mayberg, H.S.; Lisanby, S.H.; Dunn, L.B. Participants’ Perceptions of Deep Brain Stimulation Research for Treatment-Resistant Depression: Risks, Benefits, and Therapeutic Misconception. AJOB Prim. Res. 2011, 2, 33–41. [Google Scholar] [CrossRef] [PubMed]
  92. Gilbert, F. Self-Estrangement & Deep Brain Stimulation: Ethical Issues Related to Forced Explantation. Neuroethics 2015, 8, 107–114. [Google Scholar]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.