Optimal Wavelength Selection for Hyperspectral Imaging Evaluation on Vegetable Soybean Moisture Content during Drying
Abstract
:1. Introduction
- Optimal wavelengths based on the mean reflectance value of dried vegetable soybeans are selected by using the BFWA.
- A partial least squares regression (PLSR) method is used to develop prediction models for predicting the moisture content of dried soybeans.
2. Materials and Methods
2.1. Experimental Samples and Data Acquisition
2.2. Image Preprocessing, Segmentation, and Feature Extraction
2.3. Wavelength Selection Based on BFWA
2.3.1. SPA, UVE and GA
2.3.2. BFWA
Population Initialization
Evaluation
Explosion
Generation of Sparks and Selection
2.4. Development of a Moisture Prediction Model of Dried Vegetable Soybeans
3. Results and Discussion
3.1. Prediction Model Established by Full Wavelengths
3.2. Comparison of Results Obtained by SPA, UVE, and BFWA
3.3. Comparison of Results Obtained by GA and BFWA
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, M.; Wang, Q.; Zhang, M.; Zhu, Q. Prediction of moisture content and color for vegetable soybean during drying process based on multiple model fusion. J. Food Eng. 2014, 128, 24–30. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, M.; Mujumdar, A.S.; Xiao, G.; Sun, J. Drying of edamames by hot air and vacuum microwave combination. J. Food Eng. 2006, 77, 977–982. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bolelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Romano, G.; Argyropoulos, D.; Nagle, M.; Khan, M.T.; Müller, J. Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J. Food Eng. 2012, 109, 438–448. [Google Scholar] [CrossRef]
- Huang, M.; Wan, X.; Zhang, M.; Zhu, Q. Detection of insect-damaged vegetable soybean using hyperspectral transmittance image. J. Food Eng. 2013, 116, 45–49. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, L.; Liu, H.; Zhu, A. Successive projections algorithm and it’s application to selecting the wheat near-infrared spectral variables. Spectrosc. Spectr. Anal. 2010, 30, 949–952. [Google Scholar]
- Wang, S.; Huang, M.; Zhu, Q. Optimal wavelength selection of hyperspectral scattering Images based on UVE-PLS projection analysis. Acta Photonica Sin. 2011, 40, 428–432. [Google Scholar] [CrossRef]
- Hu, M.; Dong, Q.; Liu, B.; Opara, U. Prediction of mechanical properties of blueberry using hyperspectral interactance imaging. Postharvest Biol. Technol. 2016, 115, 122–131. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, G. Band selection of hyperspectral image based on improved genetic algorithm. J. Grad. Sch. Chin. Acad. Sin. 2009, 26, 795–802. [Google Scholar]
- Koumousis, V.K.; Katsaras, C.P. A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 2006, 10, 19–28. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Y. Fireworks algorithm for optimization. In Advances in Swarm Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 21, pp. 355–364. [Google Scholar]
- Imran, A.M.; Kowsalya, M. A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int. J. Elec. Power 2014, 62, 312–322. [Google Scholar] [CrossRef]
- Misra, P.R.; Si, T. Image segmentation using clustering with fireworks algorithm. In Proceeding of the International Conference on Intelligent Systems, Coimbatore, India, 5–6 January 2017. [Google Scholar]
- Li, X.; Cui, Y. The binary encoding based fireworks clustering algorithm. App. Sci. Technol. 2016, 43, 36–39. [Google Scholar]
- Cheng, J.; Sun, D.; Pu, H. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen–thawed fish muscle. Food Chem. 2016, 197, 855–863. [Google Scholar] [CrossRef]
- Ye, S.; Wang, D.; Min, S. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometr. Intell. Lab. 2008, 91, 194–199. [Google Scholar] [CrossRef]
- Lokesh, K.P.; Srikanth, R.K.; Rajesh, K. Binary fireworks algorithm based thermal unit commitment. Int. J. Swarm Intell. Res. 2015, 6, 87–101. [Google Scholar]
- Sawatsky, M.L.; Clyde, M.; Meek, F. Partial least squares regression in the social sciences. Tutor. Quant. Meth. Psych. 2015, 11, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Zheng, S.; Tan, Y. A GPU-based parallel fireworks algorithm for optimization. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 9–16 July 2013. [Google Scholar]
- Cao, J.; Jia, H.; Li, T. A fireworks explosion optimization algorithm. Comput. Sci. Eng. 2011, 33, 138–142. [Google Scholar]
- Zheng, S.; Janecek, A.; Tan, Y. Enhanced Fireworks Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancún, Mexico, 20–23 June 2013. [Google Scholar]
- Huang, M.; Zhao, W.; Wang, Q.; Zhang, M.; Zhu, Q. Prediction of moisture content uniformity using hyperspectral imaging technology during the drying of maize kernel. Int. Agrophys. 2015, 29, 39–46. [Google Scholar] [CrossRef] [Green Version]
Method | Rca | Std c of Rc a | RMSECb (%) | Std c of RMSEC b (%) | Rpa | Std c of Rp a | RMSEPb (%) | Std c of RMSEP b (%) |
---|---|---|---|---|---|---|---|---|
SPA | 0.943 | 0.006 | 6.711 | 0.292 | 0.932 | 0.015 | 7.329 | 0.537 |
UVE | 0.942 | 0.008 | 6.728 | 0.428 | 0.928 | 0.024 | 7.416 | 0.731 |
BFWA | 0.976 | 0.002 | 4.381 | 0.154 | 0.966 | 0.009 | 5.105 | 0.455 |
Prediction Set | Method | Mean Value of Rp a | Mean Value of RMSEP b (%) | Std c of Rp a | Std c of RMSEP b (%) |
---|---|---|---|---|---|
Prediction set 1 | GA | 0.965 | 5.440 | 0.004 | 0.298 |
BFWA | 0.970 | 5.127 | 0.003 | 0.205 | |
Prediction set 2 | GA | 0.948 | 5.987 | 0.002 | 0.122 |
BFWA | 0.949 | 5.913 | 0.003 | 0.161 | |
Prediction set 3 | GA | 0.951 | 5.546 | 0.005 | 0.242 |
BFWA | 0.962 | 4.949 | 0.003 | 0.203 | |
Prediction set 4 | GA | 0.968 | 5.364 | 0.002 | 0.171 |
BFWA | 0.976 | 4.704 | 0.003 | 0.250 | |
Prediction set 5 | GA | 0.960 | 5.666 | 0.003 | 0.239 |
BFWA | 0.965 | 5.274 | 0.002 | 0.159 | |
Prediction set 6 | GA | 0.960 | 5.536 | 0.004 | 0.233 |
BFWA | 0.964 | 5.122 | 0.002 | 0.183 | |
Prediction set 7 | GA | 0.970 | 5.211 | 0.003 | 0.203 |
BFWA | 0.972 | 4.972 | 0.002 | 0.136 | |
Prediction set 8 | GA | 0.962 | 5.388 | 0.001 | 0.057 |
BFWA | 0.972 | 4.782 | 0.001 | 0.038 | |
Prediction set 9 | GA | 0.970 | 4.884 | 0.003 | 0.237 |
BFWA | 0.973 | 4.641 | 0.001 | 0.105 | |
Prediction set 10 | GA | 0.961 | 5.374 | 0.004 | 0.227 |
BFWA | 0.966 | 5.254 | 0.001 | 0.107 | |
Average | GA | 0.962 | 5.439 | 0.003 | 0.203 |
BFWA | 0.967 | 5.074 | 0.002 | 0.155 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Huang, M.; Zhang, M.; Yang, B. Optimal Wavelength Selection for Hyperspectral Imaging Evaluation on Vegetable Soybean Moisture Content during Drying. Appl. Sci. 2019, 9, 331. https://doi.org/10.3390/app9020331
Yu P, Huang M, Zhang M, Yang B. Optimal Wavelength Selection for Hyperspectral Imaging Evaluation on Vegetable Soybean Moisture Content during Drying. Applied Sciences. 2019; 9(2):331. https://doi.org/10.3390/app9020331
Chicago/Turabian StyleYu, Peng, Min Huang, Min Zhang, and Bao Yang. 2019. "Optimal Wavelength Selection for Hyperspectral Imaging Evaluation on Vegetable Soybean Moisture Content during Drying" Applied Sciences 9, no. 2: 331. https://doi.org/10.3390/app9020331