Next Article in Journal
Hard X-ray Generation from ZnO Nanowire Targets in a Non-Relativistic Regime of Laser-Solid Interactions
Previous Article in Journal
Congestion Risk-Averse Stochastic Unit Commitment with Transmission Reserves in Wind-Thermal Power Systems
Previous Article in Special Issue
Study of Energy Scattering Relation and RCS Reduction Characteristic of Matrix-Type Coding Metasurface
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Special Issue on “Metasurfaces: Physics and Applications”

1
SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
2
Centre de Recherche sur l’Hétéro-Epitaxie et ses Application, CNRS, Rue Bernard Gregory, Sophia-Antipolis, 06560 Valbonne, France
*
Authors to whom correspondence should be addressed.
Appl. Sci. 2018, 8(10), 1727; https://doi.org/10.3390/app8101727
Submission received: 18 September 2018 / Accepted: 20 September 2018 / Published: 24 September 2018
(This article belongs to the Special Issue Metasurfaces: Physics and Applications)
Metasurfaces, the two-dimensional analog of metamaterials, have been attracting progressively increasing attention in recent years due to their planar configurations and thus ease of fabrication while enabling unprecedented control in optical fields [1,2,3,4]. The phase, amplitude, polarization, helicity, and even angular momentum of the reflected or transmitted optical fields can be controlled at will by tailoring optically thin planar arrays of resonant subwavelength elements arranged in a periodic or aperiodic manner. As a result, numerous applications and fascinating devices have been realized by designed planar metasurfaces, including beam deflectors [5,6,7,8,9], wave plates [10,11,12,13], flat lenses [14,15,16,17,18,19,20], holograms [21,22,23,24,25], surface wave couplers [26,27,28,29,30], and freeform metasurfaces [31,32,33].
This special issue is launched to provide a possibility for researchers in the area of metasurfaces to highlight the most recent exciting developments and discuss different metasurface configurations in depth, so as to further promote practical applications of metasurfaces. There are 12 papers selected for this special issue, representing fascinating progress and potential applications in the area of metasurfaces. This collection includes three review papers in total, which focus on a few specific branches of metasurface-based applications [34,35,36]. Lei Zhou and co-workers present a concise review on the development of multifunctional metasurfaces based on merging concept and anisotropic single-structure meta-atoms [34]. This is a timely overview article, since integrating multiple diversified functionalities into a single and ultra-compact device has become an emerging research area in photonics. The second review paper authored by Wei E.I. Sha and co-workers comprehensively discusses the recent progress in geometric-phase-based metasurfaces for orbital angular momentum (OAM) generation and detection [35]. The last review paper from Bozhevolnyi’s group focuses on the fundamentals and recent developments within metasurface-based polarimeters, which can detect the polarization state of an incident beam in one shot with a compact single device [36]. Regarding the other nine research papers, the following metasurface-based application areas are specifically addressed:
Metasurface-based microwave antennas: This special issue contains a series of works on metasurface-based antennas operating in the microwave range, which is an important application of metasurfaces. Long Li and co-workers have utilized well-designed metasurfaces to replace the conventional bulk antennas and demonstrated coherent computational imaging [37], high-order harmonic suppression [38], and electromagnetic power harvesting [39]. Additionally, novel metasurface-based antennas have been proposed with improved characteristics, such as the crossbar fractal microstrip [40] and elliptical patch with cross-shaped aperture [41].
Coding metasurface for beam-steering: This special issue includes two excellent examples of microwave coding metasurfaces, of which one is devoted to wide-angle beam-steering based on 1-bit digital reconfigurable reflective metasurfaces [42], and the other one reports the broadband radar cross-section reduction with linear polarization conversion metasurfaces [43].
Metasurface-based spectrometer: One paper presents a theoretical investigation of an off-axis metalens-based spectrometer by addressing the influences of structural parameters on the effective spectral range and spectral resolution [44]. This study outlines an important way to design and integrate planar metasurface-based spectrometers for various practical applications.
Metasurface-based waveguide: Vladimir P. Drachev and co-workers have demonstrated a metasurface-based waveguide composed of magnetic gratings with effective strips, where anisotropy in the effective parameters is introduced, providing thereby an additional flexibility to control the polarization- and angular-dependent optical response [45].
In summary, this special issue contains a series of excellent research work on metasurfaces, covering a wide area of application-oriented meta-devices. This collection of 12 papers is highly recommended and believed to benefit readers in various aspects.

Acknowledgments

We would like to thank all authors, the many dedicated referees, the editor team of Applied Sciences, and especially Ryan Pei (Assistant Managing Editor) for their valuable contributions, making this special issue a success.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
  2. Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
  3. Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
  4. Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2018, 81, 026401. [Google Scholar] [CrossRef] [PubMed]
  5. Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
  6. Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband Light Bending with Plasmonic Nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef] [PubMed]
  7. Sun, S.; Yang, K.Y.; Wang, C.M.; Juan, T.K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.T.; Guo, G.Y.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef] [PubMed]
  8. Pors, A.; Albrektsen, O.; Radko, I.P.; Bozhevolnyi, S.I. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 2013, 3, 2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. Pors, A.; Ding, F.; Chen, Y.; Radko, I.P.; Bozhevolnyi, S.I. Random-phase metasurfaces at optical wavelengths. Sci. Rep. 2016, 6, 28448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef] [PubMed]
  11. Pors, A.; Nielsen, M.G.; Bozhevolnyi, S.I. Broadband plasmonic half-wave plates in reflection. Opt. Lett. 2013, 38, 513–515. [Google Scholar] [CrossRef] [PubMed]
  12. Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
  13. Ding, F.; Wang, Z.; He, S.; Shalaev, V.M.; Kildishev, A.V. Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano 2015, 9, 4111–4119. [Google Scholar] [CrossRef] [PubMed]
  14. Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2013, 2, e72. [Google Scholar] [CrossRef]
  16. Pors, A.; Nielsen, M.G.; Eriksen, R.L.; Bozhevolnyi, S.I. Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces. Nano Lett. 2013, 13, 829–834. [Google Scholar] [CrossRef] [PubMed]
  17. Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
  19. Arbabi, A.; Arbabi, E.; Kamali, S.M.; Horie, Y.; Han, S.; Faraon, A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 2016, 7, 13682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Wang, S.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Chen, J.W.; Lu, S.H.; Chen, J.; Xu, B.; Kuan, C.H.; et al. Broadband achromatic optical metasurface devices. Nat. Commun. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  21. Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef] [Green Version]
  22. Chen, W.T.; Yang, K.Y.; Wang, C.M.; Huang, Y.W.; Sun, G.; Chiang, I.D.; Liao, C.Y.; Hsu, W.L.; Lin, H.T.; Sun, S.; et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2013, 14, 225–230. [Google Scholar] [CrossRef] [PubMed]
  23. Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef]
  24. Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
  25. Genevet, P.; Capasso, F. Holographic optical metasurfaces: A review of current progress. Rep. Prog. Phys. 2015, 78, 024401. [Google Scholar] [CrossRef] [PubMed]
  26. Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426–431. [Google Scholar] [CrossRef] [PubMed]
  27. Lin, J.; Mueller, J.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef] [PubMed]
  28. Huang, L.; Chen, X.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2013, 2, e70. [Google Scholar] [CrossRef]
  29. Pors, A.; Nielsen, M.G.; Bernardin, T.; Weeber, J.C.; Bozhevolnyi, S.I. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl. 2014, 3, e197. [Google Scholar] [CrossRef]
  30. Ding, F.; Deshpande, R.; Bozhevolnyi, S.I. Bifunctional gap-plasmon metasurfaces for visible light: Polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl. 2018, 7, 17178. [Google Scholar] [CrossRef]
  31. Teo, J.T.H.; Wong, L.J.; Molardi, C.; Genevet, P. Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys. Rev. A 2016, 94, 023820. [Google Scholar] [CrossRef]
  32. Kamali, S.M.; Arbabi, A.; Arbabi, E.; Horie, Y.; Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 2016, 7, 11618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Wu, K.; Coquet, P.; Wang, Q.J.; Genevet, P. Modelling of Free-form Conformal Metasurfaces. Nat. Commun. 2018, 9, 3494. [Google Scholar] [CrossRef] [PubMed]
  34. Tang, S.; Cai, T.; Xu, H.; He, Q.; Sun, S.; Zhou, L. Multifunctional Metasurfaces Based on the “Merging” Concept and Anisotropic Single-Structure Meta-Atoms. Appl. Sci. 2018, 8, 555. [Google Scholar] [CrossRef]
  35. Chen, M.; Jiang, L.; Sha, W. Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces. Appl. Sci. 2018, 8, 362. [Google Scholar] [CrossRef]
  36. Ding, F.; Chen, Y.; Bozhevolnyi, S.I. Metasurface-Based Polarimeters. Appl. Sci. 2018, 8, 594. [Google Scholar] [CrossRef]
  37. Kou, N.; Li, L.; Tian, S.; Li, Y. Measurement Matrix Analysis and Radiation Improvement of a Metamaterial Aperture Antenna for Coherent Computational Imaging. Appl. Sci. 2017, 7, 933. [Google Scholar] [CrossRef]
  38. Kou, N.; Liu, H.; Li, L. A Transplantable Frequency Selective Metasurface for High-Order Harmonic Suppression. Appl. Sci. 2017, 7, 1240. [Google Scholar] [CrossRef]
  39. Zhang, X.; Liu, H.; Li, L. Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces. Appl. Sci. 2018, 8, 497. [Google Scholar] [CrossRef]
  40. Kubacki, R.; Czyżewski, M.; Laskowski, D. Minkowski Island and Crossbar Fractal Microstrip Antennas for Broadband Applications. Appl. Sci. 2018, 8, 334. [Google Scholar] [CrossRef]
  41. Tellechea, A.; Ederra, I.; Gonzalo, R.; Iriarte, J.C. Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves. Appl. Sci. 2018, 8, 472. [Google Scholar] [CrossRef]
  42. Tian, S.; Liu, H.; Li, L. Design of 1-Bit Digital Reconfigurable Reflective Metasurface for Beam-Scanning. Appl. Sci. 2017, 8, 882. [Google Scholar] [CrossRef]
  43. Yang, J.; Cheng, Y.; Qi, D.; Gong, R. Study of Energy Scattering Relation and RCS Reduction Characteristic of Matrix-Type Coding Metasurface. Appl. Sci. 2018, 8, 1231. [Google Scholar] [CrossRef]
  44. Zhou, Y.; Chen, R.; Ma, Y. Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens. Appl. Sci. 2018, 8, 321. [Google Scholar] [CrossRef]
  45. Roccapriore, K.M.; Lyvers, D.P.; Brown, D.P.; Poutrina, E.; Urbas, A.M.; Germer, T.A.; Drachev, V.P. Waveguide Coupling via Magnetic Gratings with Effective Strips. Appl. Sci. 2018, 8, 6177. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Ding, F.; Genevet, P.; Bozhevolnyi, S.I. Special Issue on “Metasurfaces: Physics and Applications”. Appl. Sci. 2018, 8, 1727. https://doi.org/10.3390/app8101727

AMA Style

Ding F, Genevet P, Bozhevolnyi SI. Special Issue on “Metasurfaces: Physics and Applications”. Applied Sciences. 2018; 8(10):1727. https://doi.org/10.3390/app8101727

Chicago/Turabian Style

Ding, Fei, Patrice Genevet, and Sergey I. Bozhevolnyi. 2018. "Special Issue on “Metasurfaces: Physics and Applications”" Applied Sciences 8, no. 10: 1727. https://doi.org/10.3390/app8101727

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop