Effects of a Combined Disinfection Method on Pseudomonas aeruginosa Biofilm in Freshwater Swimming Pool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Selected Chemical and Microbiological Parameter Measurements in Pool Water
2.3. Bacterial Strains and Inoculum Preparation
2.4. Treatment of Planktonic Bacteria before Biofilm Formation
2.5. Formation of Mature Biofilm
2.6. Treatments of Mature Biofilm
2.7. Statistical Analyses
3. Results and Discussion
3.1. Swimming Pool Water (In Vivo)
3.1.1. Monitored Parameters in Swimming Pool Water
3.1.2. Microbiological Presence in Swimming Pool Water
3.2. Pseudomonas Aeruginosa Biofilm Treatment (In Vitro)
Treatment before Biofilm Formation, and Treatment on Mature Biofilm
4. Conclusions
- ▪
- The obtained results indicate that increased concentrations of trihalomethanes in pool water followed stronger water chlorination with higher concentrations of free and total chlorine. In addition, a greater number of bathers had a significant influence on their presence and on the occurrence of P. aeruginosa in pool water.
- ▪
- The occurrence of P. aeruginosa was significantly correlated with the period of an applied single (Cl) disinfection method.
- ▪
- The combined method, UV radiation/chlorination, showed the best efficiency in the destruction of mature P. aeruginosa biofilm and its ability to form biofilms.
- ▪
- The combined method did have a statistically significant effect on the number of viable bacteria of P. aeruginosa but did not eradicate mature biofilm.
- ▪
- The results of this research can contribute to furthering the understanding of biofilms created in swimming pools as a source of pool water contamination. Therefore, it is necessary to continuously monitor and control the formation of biofilm by improving sanitation and disinfection methods in swimming pools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dilnessa, T.; Demeke, G. Microbiological, physical and chemical quality of swimming water with emphasize bacteriological quality. Glob. J. Med. Res. 2016, 16, 18–27. [Google Scholar]
- Giampaoli, S.; Spica, V.R. Health and safety in recreational waters. Bull. World Health Organ. 2014, 92, 79. [Google Scholar] [CrossRef] [PubMed]
- Vukić Lušić, D.; Maestro, N.; Cenov, A.; Lušić, D.; Smolčić, K.; Tolić, S.; Maestro, D.; Kapetanović, D.; Marinac-Pupavac, S.; Tomić Linšak, D.; et al. Occurrence of P. aeruginosa in water intended for human consumption and in swimming pool water. Environments 2021, 8, 132. [Google Scholar] [CrossRef]
- Harmsen, M.; Yang, L.; Pamp, S.J.; Tolker-Nielsen, T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Microbiol. Immunol. 2010, 59, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, T.H.; Bjarnsholt, T.; Jensen, P.Ø.; Givskov, M.; Høiby, N. Targeting quorum sensing in Pseudomonas aeruginosa biofilms: Current and emerging inhibitors. Future Microbiol. 2013, 8, 901–921. [Google Scholar] [CrossRef]
- Bédard, E.; Prévost, M.; Déziel, E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiol. Open 2016, 5, 937–956. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Rice, S.A.; van den Akker, B.; Pomati, F.; Roser, D. A risk assessment of Pseudomonas aeruginosa in swimming pools: A review. J. Water Health 2012, 10, 181–196. [Google Scholar] [CrossRef]
- Guida, M.; Di Onofrio, V.; Gallè, F.; Gesuele, R.; Valeriani, F.; Liguori, R.; Romano Spica, V.; Liguori, G. Pseudomonas aeruginosa in swimming pool water: Evidences and perspectives for a new control strategy. Int. J. Environ. Res. Public Health 2016, 13, 919. [Google Scholar] [CrossRef]
- Ekowati, Y.; Ferrero, G.; Farré, M.J.; Kennedy, M.D.; Buttiglieri, G. Application of UVOX Redox® for swimming pool water treatment: Microbial inactivation, disinfection by-product formation and micro pollutant removal. Chemosphere 2019, 220, 176–184. [Google Scholar] [CrossRef]
- Masschelein, W.J.; Rice, R.G. Ultraviolet Light in Water and Wastewater Sanitation, 1st ed.; Lewis Publishers, CRC Press: Boca Raton, FL, USA, 2002; pp. 9–54. [Google Scholar]
- Kudlek, E.; Lempart, A.; Dudziak, M.; Bujak, M. Impact of the UV lamp power on the formation of swimming pool water treatment By-Products. J. Civ. Eng. Archit. Built Environ. 2018, 11, 131–138. [Google Scholar] [CrossRef]
- Chu, H. Distribution and determinants of trihalomethane concentrations in indoor swimming pools. Occup. Environ. Med. 2002, 59, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, K.T.; Zoh, K.D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci. Total Environ. 2009, 407, 1990–1997. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Font-Ribera, L. Health impact of disinfection by-products in swimming pools. Ann. Dell’istituto Super. Sanita 2012, 48, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Van Veldhoven, K.; Keski-Rahkonen, P.; Barupal, D.K.; Villanueva, C.M.; Font-Ribera, L.; Scalbert, A.; Bodinier, B.; Grimalt, J.O.; Zwiener, C.; Vlaanderen, J.; et al. Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environ Int. 2018, 111, 60–70. [Google Scholar] [CrossRef]
- Beyer, A.; Worner, H.; van Lierop, R. The Use of UV for Destruction of Combined Chlorine; Version 1.0; Wallace & Tiernan: The Netherlands, 2004; Available online: https://www.pwtag.org.uk/reference/ (accessed on 5 July 2022).
- Høiby, N.; Krogh, J.H.; Moser, C.; Song, Z.; Ciofu, O.; Kharazmi, A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect/Inst. Pasteur. 2001, 3, 23–35. [Google Scholar] [CrossRef]
- Knezevic, P.; Obreht, D.; Curcin, S.; Petrusic, M.; Aleksic, V.; Kostanjsek, R.; Petrovic, O. Phages of Pseudomonas aeruginosa: Response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J. Appl. Microbiol. 2011, 111, 245–254. [Google Scholar] [CrossRef]
- ISO 7393-2:2018; Water Quality—Determination of Free Chlorine and Total Chlorine—Part 2: Colorimetric Method Using N, N-Diethyl-1,4-Phenylenediamine, for Routine Control Purposes. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- ISO 10523:2008; Water Quality—Determination of pH. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- ISO 10301:1997; Water Quality—Determination of Highly Volatile Halogenated Hydrocarbons—Gas-Chromatographic Methods. International Organization for Standardization (ISO): Geneva, Switzerland, 1997.
- ISO 16266:2008; Detection and Enumeration of Pseudomonas aeruginosa—Method by Membrane Filtration. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- Ivanković, T.; Goić-Barišić, I.; Hrenović, J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arh. Za Hig. Rada I Toksikol. 2017, 68, 99–108. [Google Scholar] [CrossRef]
- Zwiener, C.; Richardson, S.D.; DeMarini, D.M.; Grummt, T.; Glauner, T.; Frimmel, F. Drowning in disinfection by-products? Assessing swimming pool water. Environ. Sci. Technol. 2007, 41, 363–372. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Abobi, S.M.; Quarcoo, G. Physicochemical and bacteriological quality of public swimming pools in the Tamale Metropolis, Ghana. J 2020, 3, 236–249. [Google Scholar] [CrossRef]
- Official Gazette of the Republic of Croatia 59/2020; Regulation on sanitary-technical and hygienic conditions of swimming pools and on the health safety of Pool Waters; Ministry of Health: Zagreb, Croatia, 2020.
- Karimi, B. Formation of disinfection by-products in the swimming pool water treated with different disinfection types. Desalination Water Treat 2020, 175, 174–181. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Jahed, G.R.; Zarei, A. Investigation of low-pressure ultraviolet radiation on inactivation of rhabitidae nematode from water. Iran. J. Public Health 2013, 42, 314–319. [Google Scholar]
- Cassan, D.; Mercier, B.; Castex, F.; Rambaud, A. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. Chemosphere 2006, 62, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Bożym, M.; Kłosok-Bazan, I.; Wzorek, M. Analyzing THM Concentrations in selected indoor swimming pool waters in the Opole Region. Pol. J. Environ. Stud. 2018, 27, 1001–1008. [Google Scholar] [CrossRef]
- Dyck, R.; Sadiq, R.; Rodriguez, M.J.; Simard, S.; Tardif, R. Trihalomethane exposures in indoor swimming pools: A level III fugacity model. Water Res. 2011, 45, 5084–5098. [Google Scholar] [CrossRef]
- Li, J.; Blatchley, E.R., III. Volatile disinfection by-product formation resulting from chlorination of organic nitrogen precursors in swimming pools. Environ. Sci. Technol. 2007, 41, 6732–6739. [Google Scholar] [CrossRef]
- Manasfi, T.; Temime-Roussel, B.; Coulomb, B.; Vassalo, L.; Boudenne, J.L. Occurrence of brominated disinfection by-products in the air and water of chlorinated seawater swimming pools. Int. J. Hyg. Environ. Health 2017, 220, 583–590. [Google Scholar] [CrossRef]
- Chambers, V.K.; Creasy, J.D.; Joy, J.S. Modelling free and total chlorine decay in potable water distribution systems. J. Water Sci. Res. Technol. Aqua. 1995, 44, 60–69. [Google Scholar]
- Cheema, W.A.; Kaarsholm, K.M.S.; Andersen, H.R. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. Water Res. 2017, 110, 141–149. [Google Scholar] [CrossRef]
- Chowdhury, S.; Alhooshani, K.; Karanfil, T. Disinfection by products in swimming pool: Occurrences, implications and future needs. Water Res. 2014, 53, 68–109. [Google Scholar] [CrossRef]
- Chevremont, A.C.; Farnet, A.M.; Sergent, M.; Coulomb, B.; Boudenne, J.L. Multivariate optimization of facal bioindicator inactivation by coupling UV-A and UV-C LEDs. Desalination 2012, 285, 219–225. [Google Scholar] [CrossRef]
- Marconnet, C.; Houari, A.; Seyer, D.; Djafer, M.; Coriton, G.; Heim, V.; Di Martino, P. Membrane biofouling control by UV irradiation. Desalination 2011, 276, 75–81. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, B.; Lu, Y.; Mei, Y.; Shen, L. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure. J. Hazard. Mater. 2022, 421, 126682. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 9, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Hessler, C.M.; Panmanee, W.; Hassett, D.J.; Seo, Y. Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine. FEMS Microbiol. Ecol. 2013, 83, 101–111. [Google Scholar] [CrossRef]
- Chen, C.I.; Griebe, T.; Characklis, W.G. Biocide action of monochloramine on biofilm systems of Pseudomonas aeruginosa. Biofouling 1993, 7, 1–17. [Google Scholar] [CrossRef]
- Wende, E.V.D. Biocide ACTION of chlorine on Pseudomonas aeruginosa Biofilm. Ph.D. Dissertation, Montana State University-Bozeman, College of Engineering, Bozeman, MT, USA, 1991. [Google Scholar]
- Uhl, W.; Hartmann, C. Disinfection by-products and microbial contamination in the treatment of pool water with granular activated carbon. Water Sci. Technol. 2005, 52, 71–76. [Google Scholar] [CrossRef]
- Leoni, E.; Legnani, p.; Mucci, M.T.; Pirani, R. Prevalence of mycobacteria in a swimming pool environment. J. Appl. Microbiol. 1999, 87, 683–688. [Google Scholar] [CrossRef]
- Tate, D.; Mawer, S.; Newton, A. Outbreak of Pseudomonas aeruginosa folliculitis associated with a swimming pool inflatable. Epidemiol. Infect. 2003, 130, 187–192. [Google Scholar] [CrossRef]
Monitored Parameters | Disinfection Method | Sampling Point | |||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
pH | Cl | 6.70 (6.20–7.50) | 6.75 (6.20–7.50) | 6.75 (6.20–7.50) | 6.75 (6.20–7.50) |
UV + Cl | 6.95 a (6.50–7.70) | 7.05 a (6.5–7.7) | 7.05 a (6.5–7.8) | 7.10 a (6.5–7.8) | |
Free chlorine (mg/L Cl2) | Cl | 0.41 (0.05–1.15) | 0.44 (0.05–1.19) | 0.54 (0.05–1.20) | 0.58 (0.05–1.15) |
UV + Cl | 0.19 a (0.0–0.41) | 0.25 a (0.02–0.52) | 0.22 a (0.01–0.52) | 0.23 a (0.02–0.57) | |
Total chlorine (mg/L Cl2) | Cl | 0.46 (0.12–1.25) | 0.49 (0.16–1.28) | 0.61 (0.25–1.29) | 0.62 (0.15–8.0) |
UV + Cl | 0.30 a (0.11–0.51) | 0.32 a (0.11–0.66) | 0.33 a (0.11–0.64) | 0.33 a (0.08–0.66) | |
Trihalomethanes (μg/L) | Cl | 45.3 (5–308) | 59.1 (6.22–273.2) | 55.5 (6.19–282.9) | 71.1 (3.20–352.0) |
UV + Cl | 21.3 (2.77–105.6) | 31.1 (3.87–102.6) | 44.6 (7.55–140.6) | 40.8 (7.01–129.4) | |
Number of bathers/day | Cl | 45.0 (0.0–70) | 45.0 (0.0–70.0) | 45.0 (0.0–70.0) | 45.0 (0.0–70.0) |
UV + Cl | 32.5 a (0–56) | 32.5 a (0–56) | 32.5 a (0–56) | 32.5 a (0–56) |
Variable | pH | Free Chlorine | Total Chlorine | Trihalomethanes | Number of Bathers/Day | Pseudomonas aeruginosa |
---|---|---|---|---|---|---|
pH | 1.00 | |||||
Free chlorine | −0.24 | 1.00 | ||||
Total chlorine | −0.18 | 0.89 | 1.00 | |||
Trihalomethanes | −0.18 | 0.32 | 0.34 | 1.00 | ||
Number of bathers/day | −0.18 | 0.21 | 0.25 | 0.20 | 1.00 | |
Pseudomonasaeruginosa | 0.05 | −0.16 | −0.15 | 0.12 | 0.11 | 1.00 |
Variable | pH | Free Chlorine | Total Chlorine | Trihalomethanes | Number of Bathers/Day | Pseudomonas aeruginosa |
---|---|---|---|---|---|---|
pH | 1.00 | |||||
Free chlorine | −0.07 | 1.00 | ||||
Total chlorine | 0.18 | 0.67 | 1.00 | |||
Trihalomethanes | 0.21 | −0.16 | 0.07 | 1.00 | ||
Number of bathers/day | 0.21 | −0.38 | −0.08 | 0.49 | 1.00 | |
Pseudomonas aeruginosa | 1.00 |
Variable | Eigenvector Spreadsheet | ||
---|---|---|---|
Component 1 | Component 2 | Component 3 | |
pH | 0.26 | 0.07 | 0.19 |
Free chlorine | −0.44 | 0.05 | 0.04 |
Total chlorine | −0.34 | 0.05 | 0.15 |
Trihalomethanes | −0.33 | 0.12 | 0.06 |
Number of bathers/day | −0.20 | 0.08 | 0.01 |
Pseudomonas aeruginosa | −0.03 | −0.23 | 0.17 |
Cl | −0.48 | −0.09 | −0.08 |
UV + Cl | 0.48 | 0.09 | 0.08 |
Sampling point 0 | 0.03 | −0.25 | −0.67 |
Sampling point 1 | 0.01 | −0.29 | 0.01 |
Sampling point 2 | −0.01 | 0.82 | 0.01 |
Sampling point 3 | −0.03 | −0.27 | 0.67 |
Loading Spreadsheet | |||
Component 1 | Component 2 | Component 3 | |
pH | 0.48 | 0.09 | 0.23 |
Free chlorine | −0.81 | 0.06 | 0.04 |
Total chlorine | −0.61 | 0.06 | 0.18 |
Trihalomethanes | −0.60 | 0.15 | 0.07 |
Number of bathers/day | −0.36 | 0.09 | 0.01 |
Pseudomonas aeruginosa | −0.05 | −0.27 | 0.20 |
Cl | −0.88 | −0.10 | −0.10 |
UV + Cl | 0.88 | 0.10 | 0.10 |
Sampling point 0 | 0.05 | −0.30 | −0.79 |
Sampling point 1 | 0.03 | −0.35 | 0.01 |
Sampling point 2 | −0.02 | 0.96 | 0.01 |
Sampling point 3 | −0.05 | −0.31 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigler Zekanović, M.; Begić, G.; Medić, A.; Gobin, I.; Tomić Linšak, D. Effects of a Combined Disinfection Method on Pseudomonas aeruginosa Biofilm in Freshwater Swimming Pool. Environments 2022, 9, 103. https://doi.org/10.3390/environments9080103
Sigler Zekanović M, Begić G, Medić A, Gobin I, Tomić Linšak D. Effects of a Combined Disinfection Method on Pseudomonas aeruginosa Biofilm in Freshwater Swimming Pool. Environments. 2022; 9(8):103. https://doi.org/10.3390/environments9080103
Chicago/Turabian StyleSigler Zekanović, Melani, Gabrijela Begić, Alan Medić, Ivana Gobin, and Dijana Tomić Linšak. 2022. "Effects of a Combined Disinfection Method on Pseudomonas aeruginosa Biofilm in Freshwater Swimming Pool" Environments 9, no. 8: 103. https://doi.org/10.3390/environments9080103