Next Article in Journal
Wood Petrifaction: A New View of Permineralization and Replacement
Previous Article in Journal
Present Glaciers and Their Dynamics in the Arid Parts of the Altai Mountains
Article Menu

Export Article

Open AccessArticle
Geosciences 2017, 7(4), 118; doi:10.3390/geosciences7040118

Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan

1
Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
2
Department of Geology, Faculty of Earth and Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
*
Author to whom correspondence should be addressed.
Received: 25 September 2017 / Revised: 14 November 2017 / Accepted: 15 November 2017 / Published: 18 November 2017
View Full-Text   |   Download PDF [2373 KB, uploaded 19 November 2017]   |  

Abstract

Thermal remote sensing is currently an emerging technique for monitoring active volcanoes around the world. The study area, the Aso volcano, is currently the most active and has erupted almost every year since 2012. For the first time, Landsat 8 TIRS thermal data were used in this study area to evaluate and monitor the recent thermal status of this volcano, situated in Southwest Japan, from 2013 to 2016 using four sets of images. The total heat discharged rate (HDR), radiative heat flux (RHF), land surface temperature (LST), and land cover (LC) were evaluated, and the relationship between them was determined, to understand the thermal status of the study area. We used the NDVI (normalized difference vegetation index) for land cover, the NDVI-threshold method for emissivity, the split-window algorithm for LST, and the Stefan–Boltzmann equation for radiative heat flux estimation in this study. The total heat discharge rate was computed using a relationship coefficient of RHF and HDR here. The highest HDR was obtained in 2013, at about 4715 MW, and was the lowest in 2016, at about 3819 MW. The total heat loss showed a declining trend, overall, from 2013 to 2016. The highest pixel RHF was in 2013 and the lowest was in 2014; after that, it increased gradually until 2016, coinciding with the LST of this study area. LC showed that, with decreasing heat loss, the vegetated coverage increased and bare land or mixed land decreased, and vice versa. From the spatial distribution of RHF, we saw that, within the Nakadake craters of the Aso volcano, Crater 1 was the most active part of this volcano throughout the study period, and Crater 3 was the most active after 2014. We inferred that the applied methods using the continuous Landsat 8 TIRS data showed an effective and efficient method of monitoring the thermal status of this active volcano. View Full-Text
Keywords: heat discharge rate; radiative heat flux; land surface temperature; land cover; Landsat 8 TIRS; Aso volcano heat discharge rate; radiative heat flux; land surface temperature; land cover; Landsat 8 TIRS; Aso volcano
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosciences 2017, 7, 118.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Geosciences EISSN 2076-3263 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top