Geomorphological Observations and Physical Hypotheses About Martian Dune Gullies
Abstract
:1. Introduction
2. Methods
3. Observations and Discussion: Water on Dunes
Discussion: Barchan Dune and Aerodynamic Contrails
4. Observations and Discussion: Ice on Dunes
- The downwind initial part of the slope exhibits a steep slope (Figure 7) that is best seen on stereoscopic pairs. This feature is not typical of a dune, suggesting two possible implications: strong erosion immediately below the ridge and the possibility that the sand, at least in this area, is moist enough to support a slope greater than the downwind dune slope. This area has a series of small alcoves from which the channels originate.
- The channels find their origin immediately below the ridge, just within the high-slope area described in (1). We can see a dense, narrow torrential network similar to an inverted delta converging in the last collector, right at the end of the high gradient area (box “Top” in Figure 7).
- The collector is the summit part of the channel. It is an incision that follows the line of maximum slope, without degradation, as in the ACA model. The downwind slope of the dune thus appears as a field of parallel (occasionally sinuous or converging) tracks. Sometimes a channel may deviate to another parallel trajectory, even bypassing an intermediate channel. Examples of this can be seen in Figure 7.
- The terminal part of the channels never crosses the plain. The most extended channels terminate right at the end of the downwind slope (“bottom” panel of Figure 7). Channels reaching this extreme limit typically show a “U” profile and a semicircular termination often characterized by a raised edge (various examples in Figure 8). We will call this termination “spoon-shaped”. The few channels that end prematurely, around the middle of the slope, typically end with degrading incision or with deltaic branching. These are the ones often displaying dark halos that we will later call “humidity”.
- There is never an apron or any trace of deposition of the eroded material.
- Stereoscopic pairs show more clearly that the section of the gullies is typically “V”-shaped in the upper part (streams and collectors) while it is typically “U”-shaped in the lower part of the channels, ending right at the bottom. The central body of the gully incision passes from one section to the other, often with the presence of superimposed and degrading “V” incisions within the “U” valley. From stereoscopy, it is also clear that channels often have raised edges, forming flat-bottomed or even convex valleys in the spaces between one channel and another. The “relief” of these edges gradually increases toward the bottom [40].
- Traces of dust devils. The appearance of these dark curves is the key indicator of recent wind activity. These traces are observed throughout the spring and summer (initially on the upwind slope but also—in the summer—on the entire dune surface (Figure 9, “Traces of dust devils”).
- Traces of humidity. These are dark halos (see Section 4 of characterization) surrounding the channels and seem to indicate moisture in the sand. We hypothesize that they are due to fluid absorption in the sand. This occurs between spring and summer but more frequently in the last three-quarters of the spring. They persist particularly on the poleward slopes of the longitudinal undulations of the dune front (Figure 10, box “Humidity”).
- Ice balls. These are the high albedo spheroidal or ellipsoidal objects (usually the brightest white in the color palette) observed at the termination or along the end of the channels (Figure 10, box “Ice”). These rare phenomena are typically observed in the first half of spring, and when present, they can occur in large numbers. Figure 8 shows 9 of the 11 phenomena observed in the same photograph (from which also Figure 9 is taken). Ice balls are found in the terminal “spoons” of the channels. Note that the “spoon” in the second channel from the top in Figure 7 “Bottom” is the same one that houses an ice ball in Figure 10 “Ice.” The first photo was taken on the 47th day of year 29, and locally (latitude 54.2° S), 24% of the fall season had passed. The second photo, with the ice ball, was taken on day 410 of year 33 (when locally, about 27% of the spring (26.8) had elapsed). The ice ball is the largest observed during the entire 9 Martian years. The minimum dimensions based on the pixels in the photo are 3 m horizontal, 1.7 m vertical. Looking at the same photo at the highest resolution, one can spot other globular or elongated bodies left along the channels. In general, it is evident that multiple bodies move through different channels on the same day and may also move through the same channel over time.
- Vapor. This appears to be either fog covering the entire dune or similar to “columns of smoke.” These columns seem to emanate from the termination of channels not reaching the plain, presumably in the V-section. Sometimes, they are observed along the course of a channel where it verges toward sunlight, as observed in Figure 10, comparing the zoom of the “Vapor” box with the corresponding “V” perimeter on the extended image. This extremely rare phenomenon is observed only in the first half of spring.
- Full frosted surface. Here, the dune frosts completely the whole downwind slope and all or part of the upwind slope (e.g. “Full frosted surface” box in Figure 9). According to our observations, this can occur between mid-winter and mid-spring, and seems particularly frequent around the vernal equinox.
- Frost. This is the frost present on the dune without producing total coverage (e.g., “Frost” box in Figure 10). Except in the summer, this can happen at different times and in different ways, which we will describe in detail.
- Full “clean” surface. It does not indicate a particular phenomenon. It means that the dune exhibits none of the transient phenomena mentioned above. This should be the standard condition for Mars, but in reality, it is quite rare on this dune. It may occur more frequently within the first half of autumn (Figure 9, “Full clean surface”).
- Winter and autumn frost forms inside the channels, and in the cavities of alcoves on their slopes exposed to light. The downwind slope of the megadune may have longitudinal ripples. Again, frost may occur on the side most exposed to light. This frost appears brighter than the spring one. It is unclear whether this is due to direct exposure to light or because it is ice with a higher albedo (e.g., CO2 compared to H2O).
- Spring frost forms mainly below the ridge (middle Figure 10) but also just upwind (Figure 10 “Frost”). In this case, it will still stay on the downwind slopes of the ripple marks. Looking in detail at the cavities of the alcoves, it is evident that frost is missed on the slopes most directly exposed to light, even when the entire surrounding area is frosted. Here, again, as we have speculated in the Kaiser Crater, it seems to be the wind that causes the frost but it is the shade that allows it to persist.
- Over the course of the year, episodes I and II are separated by an intermediate phase of frosting of the entire downwind slope of the dune (Figure 9, “Full frosted surface”). This occurs around the local spring equinox (Sol 373, the autumn equinox for the Northern Hemisphere).
4.1. Observations: Seasonality
4.2. Discussion: Compatibility of H2O
4.3. Discussion: Non-ACA Gullies
5. Observations: Current Nature
Discussion: Current Nature
6. Possibility of Extending the Discussion to Ice in Craters
Speculations on a Water Cycle
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
HiRISE Image | Resolution (cm/px) | Earth Date (dd/mm/yy) | MY | Md | “Clean” | Dust Devils | Frost | Full Frost | “Humidity” | “Vapor” | “Ice Ball” | |
1 | PSP_001440_1255_RED | 50.3 | 16/11/2006 | 28.4 | 291 | x | ||||||
2 | PSP_001981_1255_RED | 50.9 | 28/12/2006 | 28.5 | 332 | x | ||||||
3 | PSP_002337_1255_RED | 25.2 | 25/01/2007 | 28.5 | 360 | x | ||||||
4 | PSP_002482_1255_RED | 25.5 | 05/02/2007 | 28.6 | 370 | x | ||||||
5 | PSP_002548_1255_RED | 25.4 | 10/02/2007 | 28.6 | 375 | x | ||||||
6 | PSP_002904_1255_RED | 25.1 | 10/03/2007 | 28.6 | 402 | x | ||||||
7 | PSP_003326_1255_RED | 25.4 | 12/04/2007 | 28.6 | 434 | x | x | |||||
8 | PSP_004038_1255_RED | 25.3 | 07/06/2007 | 28.7 | 489 | x | x | |||||
9 | PSP_004249_1255_RED | 25.2 | 23/06/2007 | 28.8 | 505 | x | x | |||||
10 | PSP_005238_1255_RED | 25.3 | 08/09/2007 | 28.9 | 580 | x | x | |||||
11 | PSP_005383_1255_RED | 25.4 | 19/09/2007 | 28.9 | 590 | x | ||||||
12 | PSP_005528_1255_RED | 26.1 | 01/10/2007 | 28.9 | 602 | x | ||||||
13 | PSP_006873_1255_RED | 50.6 | 13/01/2008 | 29.1 | 35 | x | ||||||
14 | PSP_007018_1255_RED | 25.4 | 25/01/2008 | 29.1 | 47 | x | ||||||
15 | PSP_007229_1255_RED | 50.7 | 10/02/2008 | 29.1 | 62 | x | ||||||
16 | PSP_007519_1255_RED | 50.2 | 04/03/2008 | 29.1 | 84 | x | ||||||
17 | PSP_009879_1255_RED | 100.4 | 04/09/2008 | 29.4 | 263 | x | ||||||
18 | PSP_010090_1255_RED | 100.8 | 20/09/2008 | 29.4 | 279 | x | ||||||
19 | PSP_010301_1255_RED | 101.4 | 07/10/2008 | 29.4 | 295 | x | ||||||
20 | PSP_010446_1255_RED | 50.8 | 18/10/2008 | 29.5 | 306 | x | ||||||
21 | PSP_010868_1255_RED | 50.6 | 20/11/2008 | 29.5 | 338 | x | ||||||
22 | ESP_011580_1255_RED | 50.0 | 14/01/2009 | 29.6 | 392 | x | ||||||
23 | ESP_012213_1255_RED | 25.3 | 05/03/2009 | 29.7 | 440 | x | ||||||
24 | ESP_012569_1255_RED | 25.3 | 01/04/2009 | 29.7 | 467 | x | ||||||
25 | ESP_013136_1255_RED | 25.0 | 16/05/2009 | 29.8 | 511 | x | ||||||
26 | ESP_017237_1255_RED | 101.2 | 31/03/2010 | 30.2 | 152 | x | ||||||
27 | ESP_018516_1255_RED | 101.0 | 09/07/2010 | 30.4 | 250 | x | ||||||
28 | ESP_018872_1255_RED | 100.8 | 06/08/2010 | 30.4 | 277 | x | ||||||
29 | ESP_019083_1255_RED | 50.5 | 22/08/2010 | 30.4 | 293 | x | ||||||
30 | ESP_019439_1255_RED | 50.5 | 19/09/2010 | 30.5 | 320 | x | x | |||||
31 | ESP_019650_1255_RED | 50.1 | 05/10/2010 | 30.5 | 335 | x | ||||||
32 | ESP_019861_1255_RED | 50.4 | 22/10/2010 | 30.5 | 352 | x | ||||||
33 | ESP_020217_1255_RED | 25.4 | 18/11/2010 | 30.6 | 378 | x | ||||||
34 | ESP_020428_1255_RED | 25.1 | 05/12/2010 | 30.6 | 395 | x | ||||||
35 | ESP_020784_1255_RED | 25.3 | 01/01/2011 | 30.6 | 421 | x | x | |||||
36 | ESP_021496_1255_RED | 25.9 | 26/02/2011 | 30.7 | 475 | x | ||||||
37 | ESP_021562_1255_RED | 25.2 | 03/03/2011 | 30.7 | 481 | x | ||||||
38 | ESP_021918_1255_RED | 25.2 | 31/03/2011 | 30.8 | 508 | x | ||||||
39 | ESP_022340_1255_RED | 25.4 | 03/05/2011 | 30.8 | 540 | x | ||||||
40 | ESP_025597_1255_RED | 100.9 | 12/01/2012 | 31.2 | 118 | x | x | |||||
41 | ESP_027364_1255_RED | 100.6 | 28/05/2012 | 31.4 | 252 | x | ||||||
42 | ESP_028063_1255_RED | 50.6 | 22/07/2012 | 31.5 | 305 | x | ||||||
43 | ESP_028208_1255_RED | 50.7 | 02/08/2012 | 31.5 | 316 | x | ||||||
44 | ESP_028419_1255_RED | 25.4 | 18/08/2012 | 31.5 | 331 | x | ||||||
45 | ESP_028630_1255_RED | 50.8 | 04/09/2012 | 31.5 | 348 | x | ||||||
46 | ESP_028841_1255_RED | 50.5 | 20/09/2012 | 31.5 | 364 | x | ||||||
47 | ESP_029263_1255_RED | 25.3 | 23/10/2012 | 31.6 | 396 | x | ||||||
48 | ESP_029408_1255_RED | 25.2 | 03/11/2012 | 31.6 | 406 | x | ||||||
49 | ESP_029619_1255_RED | 25.5 | 20/11/2012 | 31.6 | 423 | x | ||||||
50 | ESP_029764_1255_RED | 25.3 | 01/12/2012 | 31.6 | 434 | x | ||||||
51 | ESP_029830_1255_RED | 51.3 | 06/12/2012 | 31.7 | 438 | x | x | |||||
52 | ESP_030120_1255_RED | 50.7 | 29/12/2012 | 31.7 | 461 | x | ||||||
53 | ESP_030186_1255_RED | 25.4 | 03/01/2013 | 31.7 | 466 | x | ||||||
54 | ESP_030542_1255_RED | 25.4 | 31/01/2013 | 31.7 | 493 | x | ||||||
55 | ESP_030898_1255_RED | 25.2 | 28/02/2013 | 31.8 | 520 | x | ||||||
56 | ESP_031755_1255_RED | 50.9 | 05/05/2013 | 31.9 | 585 | x | ||||||
57 | ESP_032533_1255_RED | 50.9 | 05/07/2013 | 32.0 | 644 | x | ||||||
58 | ESP_033456_1255_RED | 50.6 | 15/09/2013 | 32.1 | 45 | |||||||
59 | ESP_034089_1255_RED | 50.6 | 03/11/2013 | 32.1 | 93 | x | ||||||
60 | ESP_034234_1255_RED | 50.7 | 15/11/2013 | 32.2 | 105 | x | ||||||
61 | ESP_034445_1255_RED | 100.7 | 01/12/2013 | 32.2 | 120 | x | ||||||
62 | ESP_036357_1255_RED | 101.3 | 29/04/2014 | 32.4 | 265 | x | ||||||
63 | ESP_037280_1255_RED | 50.5 | 10/07/2014 | 32.5 | 335 | x | ||||||
64 | ESP_037702_1255_RED | 25.2 | 12/08/2014 | 32.5 | 368 | x | ||||||
65 | ESP_038335_1255_RED | 26.2 | 30/09/2014 | 32.6 | 415 | x | ||||||
66 | ESP_038467_1255_RED | 25.1 | 10/10/2014 | 32.6 | 425 | x | x | |||||
67 | ESP_038797_1255_RED | 57.2 | 05/11/2014 | 32.7 | 450 | x | ||||||
68 | ESP_039153_1255_RED | 25.4 | 03/12/2014 | 32.7 | 477 | x | x | |||||
69 | ESP_039298_1255_RED | 25.3 | 14/12/2014 | 32.7 | 488 | x | ||||||
70 | ESP_043267_1255_RED | 50.4 | 19/10/2015 | 33.2 | 120 | x | ||||||
71 | ESP_044678_1255_RED | 100.9 | 06/02/2016 | 33.3 | 227 | x | ||||||
72 | ESP_045377_1255_RED | 50.2 | 01/04/2016 | 33.4 | 281 | x | ||||||
73 | ESP_045588_1255_RED | 50.3 | 17/04/2016 | 33.4 | 297 | x | ||||||
74 | ESP_046089_1255_RED | 51.1 | 26/05/2016 | 33.5 | 335 | x | ||||||
75 | ESP_046155_1255_RED | 50.6 | 31/05/2016 | 33.5 | 339 | x | ||||||
76 | ESP_046511_1255_RED | 25.2 | 28/06/2016 | 33.5 | 367 | x | ||||||
77 | ESP_046722_1255_RED | 25.3 | 15/07/2016 | 33.6 | 383 | x | ||||||
78 | ESP_046867_1255_RED | 25.5 | 26/07/2016 | 33.6 | 394 | x | ||||||
79 | ESP_047078_1255_RED | 25.2 | 11/08/2016 | 33.6 | 410 | x | ||||||
80 | ESP_047434_1255_RED | 25.2 | 08/09/2016 | 33.7 | 436 | x | ||||||
81 | ESP_047790_1255_RED | 50.5 | 06/10/2016 | 33.7 | 464 | x | ||||||
82 | ESP_049148_1255_RED | 51.0 | 20/01/2017 | 33.8 | 567 | x | ||||||
83 | ESP_049992_1255_RED | 51.1 | 26/03/2017 | 33.9 | 630 | x | ||||||
84 | ESP_050203_1255_RED | 25.2 | 12/04/2017 | 34.0 | 647 | x | ||||||
85 | ESP_051060_1255_RED | 50.7 | 18/06/2017 | 34.1 | 43 | x | ||||||
86 | ESP_053895_1255_RED | 101.2 | 25/01/2018 | 34.4 | 259 | x | ||||||
87 | ESP_055240_1255_RED | 25.2 | 09/05/2018 | 34.5 | 360 | x | ||||||
88 | ESP_055939_1255_RED | 50.3 | 03/07/2018 | 34.6 | 413 | x | ||||||
89 | ESP_056493_1260_RED | 50.4 | 15/08/2018 | 34.7 | 455 | x | ||||||
90 | ESP_057192_1255_RED | 25.1 | 08/10/2018 | 34.8 | 508 | x | ||||||
91 | ESP_059236_1255_RED | 25.4 | 17/03/2019 | 35.0 | 664 | x | ||||||
92 | ESP_059302_1255_RED | 25.2 | 22/03/2019 | 35.0 | 668 | x | ||||||
93 | ESP_063192_1255_RED | 50.6 | 19/01/2020 | 35.4 | 295 | x | ||||||
94 | ESP_063759_1255_RED | 50.5 | 03/03/2020 | 35.5 | 337 | x | x | |||||
95 | ESP_064682_1255_RED | 50.4 | 14/05/2020 | 35.6 | 408 | x | x | |||||
96 | ESP_065381_1255_RED | 50.3 | 07/07/2020 | 35.7 | 460 | x | ||||||
97 | ESP_065869_1255_RED | 25.1 | 15/08/2020 | 35.7 | 498 | x | x | |||||
98 | ESP_066766_1255_RED | 25.2 | 23/10/2020 | 35.8 | 565 | x | ||||||
99 | ESP_069049_1255_RED | 50.4 | 19/04/2021 | 36.1 | 70 | x | ||||||
100 | ESP_072662_1255_RED | 50.8 | 26/01/2022 | 36.5 | 344 | x | ||||||
101 | ESP_072807_1255_RED | 50.3 | 06/02/2022 | 36.5 | 355 | x | ||||||
102 | ESP_073163_1255_RED | 50.7 | 06/03/2022 | 36.6 | 382 | x | x | |||||
103 | ESP_073440_1255_RED | 25.8 | 27/03/2022 | 36.6 | 403 | x | ||||||
104 | ESP_073585_1255_RED | 25.1 | 08/04/2022 | 36.6 | 414 | x | x | |||||
105 | ESP_073796_1255_RED | 50.1 | 24/04/2022 | 36.6 | 430 | x | ||||||
106 | ESP_074007_1255_RED | 25.4 | 10/05/2022 | 36.7 | 446 | x | x | |||||
107 | ESP_074363_1255_RED | 25.4 | 07/06/2022 | 36.7 | 473 | x | x | |||||
108 | ESP_075352_1255_RED | 25.5 | 23/08/2022 | 36.8 | 547 | x | ||||||
119 | ESP_075497_1255_RED | 25.2 | 04/09/2022 | 36.8 | 559 | x | ||||||
110 | ESP_076130_1255_RED | 50.2 | 23/10/2022 | 36.9 | 607 | x |
References
- Malin, M.C.; Edgett, K.S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 2000, 288, 2330–2335. [Google Scholar] [CrossRef]
- Harrison, T.N.; Osinski, G.R.; Tornabene, L.L. Global Documentation of Gullies with the Mars Reconnaissance Orbiter Context Camera (CTX) and Implications for Their Formation [Abstract 2124]. In Proceedings of the 45th Lunar and Planetary Science Conference Abstracts, Lunar and Planetary Institute, The Woodlands, TX, USA, 17–21 March 2014; Available online: https://www.hou.usra.edu/meetings/lpsc2014/pdf/2124.pdf (accessed on 18 November 2024).
- Harrison, T.N. Martian Gully Formation and Evolution: Studies from the Local to Global Scale. Ph.D. Dissertation, University of Western Ontario, London, ON, Canada, 2016. Available online: https://ir.lib.uwo.ca/etd/3980 (accessed on 15 November 2024).
- Gaidos, E.J. Cryovolcanism and the recent flow of liquid water on Mars. Icarus 2001, 153, 218–223. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S.; Posiolova, L.V.; McColley, S.M.; Noe Dobrea, E.Z. Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars. Science 2006, 314, 1573–1577. [Google Scholar] [CrossRef]
- Musselwhite, D.S.; Swindle, T.D.; Lunine, J.I. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett. 2001, 28, 1283–1285. [Google Scholar] [CrossRef]
- Costard, F.; Forget, F.; Mangold, N.; Peulvast, J.P. Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 2002, 295, 110–113. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Phillips, E.L. Role of aquicludes in formation of Martian gullies. Geology 2002, 30, 1107. [Google Scholar] [CrossRef]
- Khuller, A.R.; Christensen, P.R. Evidence of exposed dusty water ice within Martian gullies. J. Geophys. Res. Planets 2021, 126, e2020JE006539. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Thorsteinsson, T.; Sigurdsson, F. Comparison of Icelandic and Martian hillside gullies. In Proceedings of the 33rd Annual Lunar and Planetary Science Conference, Houston, TX, USA, 11–15 March 2002. Abstract No. 1904. [Google Scholar]
- Lee, P. Slope Gullies on Devon Island, Canadian Arctic: Possible Analogs for Gullies on Mars and Evidence for Recent Transient Environmental Change on Mars. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 6–10 December 2002; Volume 2002, p. P12A-0362. [Google Scholar]
- Christensen, P.R. Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 2003, 422, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.E.; Toon, O.B.; Heldmann, J.L.; McKay, C.; Mellon, M.T. Stability of mid-latitude snowpacks on Mars. Icarus 2008, 196, 565–577. [Google Scholar] [CrossRef]
- Shinbrot, T.; Duong, N.H.; Kwan, L.; Alvarez, M.M. Dry granular flows can generate surface features resembling those seen in Martian gullies. Proc. Natl. Acad. Sci. USA 2004, 101, 8542–8546. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Kolb, K.J.; McEwen, A.S.; Kirk, R.L. Recent bright gully deposits on Mars: Wet or dry flow? Geology 2008, 36, 211–214. [Google Scholar] [CrossRef]
- Dundas, C.M.; McEwen, A.S.; Diniega, S.; Hansen, C.J.; Byrne, S.; McElwaine, J.N. The formation of gullies on Mars today. Geol. Soc. Lond. Spec. Publ. 2017, 467, 67–94. [Google Scholar] [CrossRef]
- Treiman, A.H. Geologic settings of martian gullies: Implications for their origins. J. Geophys. Res. 2003, 108, 8031. [Google Scholar] [CrossRef]
- Nardi, A.; Piersanti, A. Geomorphologic observations and physical hypothesis on Martian gullies. Ital. J. Geosci. 2022, 141, 245–258. [Google Scholar] [CrossRef]
- Mangold, N.; Forget, F.; Peulvast, F.C.J.P. Narrow gullies over high sand dunes on Mars: Evidence for recent liquid flows. In Proceedings of the EGS General Assembly Conference Abstracts, Nice, France, 21–26 April 2002. Abstract 3080. [Google Scholar]
- Mangold, N.; Costard, F.; Forget, F. Debris flows over sand dunes on Mars: Evidence for liquid water. J. Geophys. Res. 2003, 108, 5027. [Google Scholar] [CrossRef]
- Reiss, D.; Jaumann, R. Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field. Geophys. Res. Lett. 2003, 30, 1321. [Google Scholar] [CrossRef]
- Diniega, S.; Hansen, C.J.; McElwaine, J.N.; Hugenholtz, C.H.; Dundas, C.M.; McEwen, A.S.; Bourke, M.C. A new dry hypothesis for the formation of Martian linear gullies. Icarus 2013, 225, 526–537. [Google Scholar] [CrossRef]
- Pasquon, K.; Gargani, J.; Massé, M.; Conway, S.J. Present-day formation and seasonal evolution of linear dune gullies on Mars. Icarus 2016, 274, 195–210. [Google Scholar] [CrossRef]
- Orosei, R.; Lauro, S.E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Di Paolo, F.; Flamini, E.; Mattei, E.; Pajola, M.; et al. Radar evidence of subglacial liquid water on Mars. Science 2018, 361, 490–493. [Google Scholar] [CrossRef]
- Martínez, G.; Renno, N.O. Water and brines on Mars: Current evidence and implications for MSL. Space Sci. Rev. 2013, 175, 29–51. [Google Scholar] [CrossRef]
- Christensen, P.R. Water at the poles and in permafrost regions of Mars. Elements 2006, 2, 151–155. [Google Scholar] [CrossRef]
- Feldman, W.C.; Boynton, W.V.; Tokar, R.L.; Prettyman, T.H.; Gasnault, O.; Squyres, S.W.; Elphic, R.C.; Lawrence, D.J.; Lawson, S.L.; Maurice, S.; et al. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 2002, 297, 75–78. [Google Scholar] [CrossRef]
- Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret’yacov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; et al. Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 2002, 297, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Stuurman, C.M.; Osinski, G.R.; Holt, J.W.; Levy, J.S.; Brothers, T.C.; Kerrigan, M.; Campbell, B.A. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophys. Res. Lett. 2016, 43, 9484–9491. [Google Scholar] [CrossRef]
- Rennó, N.O.; Bos, B.J.; Catling, D.; Clark, B.C.; Drube, L.; Fisher, D.; Goetz, W.; Hviid, S.F.; Keller, H.U.; Kok, J.F.; et al. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. Planets 2009, 114, E00E03. [Google Scholar] [CrossRef]
- Nardi, A.; Bagiacchi, P.; Piersanti, A. IMD: A Dating Code to Facilitate the Study of Transient Phenomena on the Surface of Mars. Geosciences 2024, 14, 108. [Google Scholar] [CrossRef]
- Kroy, K.; Sauermann, G.; Herrmann, H.J. Minimal model for aeolian sand dunes. Phys. Rev. E 2002, E66, 031302. [Google Scholar] [CrossRef]
- Smyth, T.A. A review of Computational Fluid Dynamics (CFD) airflow modelling over aeolian landforms. Aeolian Res. 2016, 22, 153–164. [Google Scholar] [CrossRef]
- Sherman, D.J.; Zhang, P.; Bae, J.; Butler, R.J.; Baas, A.C. Morphology of barchan dunes on Earth and Mars: Classification and scale-invariance. J. Geophys. Res. Planets 2024, 129, e2024JE008526. [Google Scholar] [CrossRef]
- Green, S.I. Wing Tip Vortices. In Fluid Vortices; Fluid Mechanics and Its Applications; Springer: Dordrecht, The Netherlands, 1995; Volume 30, pp. 427–469. [Google Scholar] [CrossRef]
- Gierens, K.; Kärcher, B.; Mannstein, H.; Mayer, B. Aerodynamic contrails: Phenomenology and flow physics. J. Atmos. Sci. 2009, 66, 217–226. [Google Scholar] [CrossRef]
- Valantinas, A.; Thomas, N.; Pommerol, A.; Karatekin, O.; Lozano, L.R.; Senel, C.B.; Temel, O.; Hauber, E.; Tirsch, D.; Bickel, V.T.; et al. Evidence for transient morning water frost deposits on the Tharsis volcanoes of Mars. Nat. Geosci. 2024, 17, 608–616. [Google Scholar] [CrossRef]
- Hernández-Bernal, J.; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Ravanis, E.; Cardesín-Moinelo, A.; Connour, K.; Tirsch, D.; Ordóñez-Etxeberria, I.; Gondet, B.; Wood, S.; et al. An extremely elongated cloud over Arsia Mons volcano on Mars: I. Life cycle. J. Geophys. Res. Planets 2021, 126, e2020JE006517. [Google Scholar] [CrossRef]
- Hernández-Bernal, J.; Spiga, A.; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Forget, F.; Millour, E. An extremely elongated cloud over Arsia Mons volcano on Mars: 2. Mesoscale modeling. J. Geophys. Res. Planets 2022, 127, e2022JE007352. [Google Scholar] [CrossRef]
- Jouannic, G.; Gargani, J.; Costard, F.; Ori, G.G.; Marmo, C.; Schmidt, F.; Lucas, A. Morphological and mechanical characterization of gullies in a periglacial environment: The case of the Russell crater dune (Mars). Planet. Space Sci. 2012, 71, 38–54. [Google Scholar] [CrossRef]
- Jouannic, G.; Gargani, J.; Costard, F.; Marmo, C.; Mangold, N.; Schmidt, F.; Ori, G. Evolution of polygenic debris flows on a sand dune (Russell crater, Mars). In Proceedings of the European Planetary Science Congress, Rome, Italy, 19–24 September 2010; hal-01713649. Available online: https://hal.science/hal-01713649/document (accessed on 10 January 2025).
- Jouannic, G.; Conway, S.J.; Gargani, J.; Costard, F.; Massé, M.; Bourgeois, O.; Carter, J.; Schmidt, F.; Marmo, C.; Ori, G.G.; et al. Morphological characterization of landforms produced by springtime seasonal activity on Russell Crater megadune, Mars. Geol. Soc. Lond. Spec. Publ. 2019, 467, 115–144. [Google Scholar] [CrossRef]
- Dinwiddie, C.L.; Titus, T.N. Airborne dust plumes lofted by dislodged ice blocks at Russell crater, Mars. Geophys. Res. Lett. 2021, 48, e2020GL091920. [Google Scholar] [CrossRef]
- Hecht, M.H. Metastability of liquid water on Mars. Icarus 2002, 156, 373–386. [Google Scholar] [CrossRef]
- Vakkada Ramachandran, A.; Zorzano, M.P.; Martín-Torres, J. Experimental investigation of the atmosphere-regolith water cycle on present-day mars. Sensors 2021, 21, 7421. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Sharabian, M.; Aghababaei, M.; Karakouzian, M.; Karami, M. Water on Mars—A literature review. Galaxies 2020, 8, 40. [Google Scholar] [CrossRef]
- Heldmann, J.L.; Toon, O.B.; Pollard, W.H.; Mellon, M.T.; Pitlick, J.; Mckay, C.P.; Andersen, D.T. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. J. Geophys. Res.–Planets 2005, 110, E05004. [Google Scholar] [CrossRef]
- Ingersoll, A.P. Mars: Occurrence of liquid water. Science 1970, 168, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Haberle, R.M.; Mckay, C.P.; Schaeffer, J.; Cabrol, N.A.; Grin, E.A.; Zent, A.P.; Quinn, R. On the possibility of liquid water on present-day Mars. J. Geophys. Res.–Planets 2001, 106, 23317–23326. [Google Scholar] [CrossRef]
- Richardson, M.I.; Mischna, M.A. Long-term evolution of transient liquid water on Mars. J. Geophys. Res. Planets 2005, 110, E03003. [Google Scholar] [CrossRef]
- Sears, D.W.G.; Moore, S.R. On laboratory simulation and the evaporation rate of water on Mars. Geophys. Res. Lett. 2005, 32, L16202. [Google Scholar] [CrossRef]
- Thompson, J. On the Existence and Stability of Liquid Water on the Martian Surface. Inq. Univ. Ark. Undergrad. Res. J. 2003, 4, 24. Available online: http://scholarworks.uark.edu/inquiry/vol4/iss1/24 (accessed on 18 November 2024).
- Herny, C.; Conway, S.J.; Raack, J.; Carpy, S.; Colleu-Banse, T.; Patel, M.R. Downslope sediment transport by boiling liquid water under Mars-like conditions: Experiments and potential implications for Martian gullies. Geol. Soc. Lond. Spec. Publ. 2019, 467, 373–410. [Google Scholar] [CrossRef]
- Armstrong, J.C.; Titus, T.N.; Kieffer, H.H. Evidence for subsurface water ice in Korolev crater, Mars. Icarus 2005, 174, 360–372, ISSN 0019-1035. [Google Scholar] [CrossRef]
- Tsoar, H.; Greeley, R.; Peterfreund, A.R. Mars: The north polar sand sea and related wind patterns. J. Geophys. Res. Solid Earth 1979, 84, 8167–8180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardi, A.; Piersanti, A. Geomorphological Observations and Physical Hypotheses About Martian Dune Gullies. Geosciences 2025, 15, 29. https://doi.org/10.3390/geosciences15010029
Nardi A, Piersanti A. Geomorphological Observations and Physical Hypotheses About Martian Dune Gullies. Geosciences. 2025; 15(1):29. https://doi.org/10.3390/geosciences15010029
Chicago/Turabian StyleNardi, Adriano, and Antonio Piersanti. 2025. "Geomorphological Observations and Physical Hypotheses About Martian Dune Gullies" Geosciences 15, no. 1: 29. https://doi.org/10.3390/geosciences15010029
APA StyleNardi, A., & Piersanti, A. (2025). Geomorphological Observations and Physical Hypotheses About Martian Dune Gullies. Geosciences, 15(1), 29. https://doi.org/10.3390/geosciences15010029