Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Feed Samples, and Enzymatic Hydrolysis
2.2. Experimental Design and In Vitro Fermentation Procedures
2.3. Chemical Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results and Discussion
3.1. Fermentation Kinetics and Metabolites
3.2. The Average Coefficient of Variance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aarnink, A.J.A.; Verstegen, M.W.A. Nutrition, key factor to reduce environmental load from pig production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- De Leeuw, J.A.; Bolhuis, J.E.; Bosch, G.; Gerrits, W.J.J. Effects of dietary fibre on behaviour and satiety in pigs. Proc. Nutr. Soc. 2008, 67, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basset-Mens, C.; van der Werf, H.M.G. Scenario-based environmental assessment of farming systems: The case of pig production in France. Agric. Ecosyst. Environ. 2005, 105, 127–144. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Agricultural Statistics 2017; Department of Agriculture, National Agricultural Statistics Service: Washington, DC, USA, 2017. [Google Scholar]
- Kim, C.H.; Park, J.; Kim, M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 2014, 14, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Boisen, S.; Fernández, J.A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Bindelle, J.; Buldgen, A.; Lambotte, D.; Wavreille, J.; Leterme, P. Effect of pig faecal donor and of pig diet composition on in vitro fermentation of sugar beet pulp. Anim. Feed Sci. Technol. 2007, 132, 212–226. [Google Scholar] [CrossRef]
- Huang, Z.; Urriola, P.E.; Salfer, I.J.; Stern, M.D.; Shurson, G.C. Differences in in vitro hydrolysis and fermentation among and within high-fiber ingredients using a modified three-step procedure in growing pigs. J. Anim. Sci. 2017, 95, 5497–5506. [Google Scholar] [CrossRef]
- Jha, R.; Woyengo, T.A.; Li, J.; Bedford, M.R.; Vasanthan, T.; Zijlstra, R.T. Enzymes enhance degradation of the fiber-starch-protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 2015, 93, 1039–1051. [Google Scholar] [CrossRef]
- Jha, R.; Bindelle, J.; Rossnagel, B.; Van Kessel, A.; Leterme, P. In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim. Feed Sci. Technol. 2011, 163, 185–193. [Google Scholar] [CrossRef]
- Jha, R.; Bindelle, J.; Van Kessel, A.; Leterme, P. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim. Feed Sci. Technol. 2011, 165, 191–200. [Google Scholar] [CrossRef]
- Davies, Z.S.; Mason, D.; Brooks, A.E.; Griffith, G.W.; Merry, R.J.; Theodorou, M.K. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol. 2000, 83, 205–221. [Google Scholar] [CrossRef]
- Tagliapietra, F.; Cattani, M.; Bailoni, L.; Schiavon, S. In vitro rumen fermentation: Effect of headspace pressure on the gas production kinetics of corn meal and meadow hay. Anim. Feed Sci. Technol. 2010, 158, 197–201. [Google Scholar] [CrossRef]
- He, Z.X.; Zhao, Y.L.; McAllistera, T.A.; Yang, W.Z. Effect of in vitro techniques and exogenous feed enzymes on feed digestion. Anim. Feed Sci. Technol. 2016, 213, 148–152. [Google Scholar] [CrossRef]
- Kerr, B.J.; Gabler, N.K.; Shurson, G.C. Formulating diets containing corn distillers dried grains with solubles on a net energy basis: Effects on pig performance and on energy and nutrient digestibility. Prof. Anim. Sci. 2015, 31, 497–503. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Lu, Y.; Yao, D.; Chen, C. 2-hydrazinoquinoline as a derivatization agent for LC-MS-based metabolomic investigation of diabetic ketoacidosis. Metabolites 2013, 3, 993–1010. [Google Scholar] [CrossRef] [PubMed]
- France, J.; Dhanoa, M.S.; Theodorou, M.K.; Lister, S.J.; Davies, D.R.; Isac, D. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Stein, H.H. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci. 2017, 95, 727–739. [Google Scholar] [CrossRef]
- Urriola, P.E.; Shurson, G.C.; Stein, H.H. Digestibility of dietary fiber in distillers coproducts fed to growing pigs. J. Anim. Sci. 2010, 88, 2373–2381. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 2016, 212, 18–26. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Hansen, I. Gastrointestinal implications in pigs of wheat and oat fractions 1. Digestibility and bulking properties of polysaccharides and other major constituents. Br. J. Nutr. 1991, 65, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, L.; Cattani, M.; Tagliapietra, F.; Schiavon, S.; Bailoni, L.; Mantovani, R. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, G.; Faustini, M.; Attard, E. In vitro fermentation of feed ingredients by fresh or frozen pig fecal inocula. Anim. Sci. J. 2014, 85, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Cattani, M.; Tagliapietra, F.; Maccarana, L.; Hansen, H.H.; Bailoni, L.; Schiavon, S. Technical note: In vitro total gas and methane production measurements from closed or vented rumen batch culture systems. J. Dairy Sci. 2014, 97, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Leterme, P. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 2012, 6, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunzel, M.; Ralph, J.; Marita, J.M.; Hatfield, R.D.; Steinhart, H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agric. 2001, 81, 653–660. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Bunzel, M.; Schäfer, J.; Knudsen, K.E.B.; Sørensen, J.F.; Yu, S.; Lærke, H.N. Ferulic acid dehydrodimer and dehydrotrimer profiles of distiller’s dried grains with solubles from different cereal species. J. Agric. Food Chem. 2015, 63, 2006–2012. [Google Scholar] [CrossRef]
- Van Laar, H.; Van Straalen, W.M.; Van Gelder, A.H.; De Boever, J.L.; D’heer, B.; Vedder, H.; Kroes, R.; de Bot, P.; Van Hees, J.; Cone, J.W. Repeatability and reproducibility of an automated gas production technique. Anim. Feed. Sci. Technol. 2006, 127, 133–150. [Google Scholar] [CrossRef]
- Cornou, C.; Storm, I.M.L.D.; Hindrichsen, I.K.; Worgan, H.; Bakewell, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Tagliapietra, F.; Cattani, M.; Ritz, C.; et al. A ring test of a wireless in vitro gas production system. Anim. Prod. Sci. 2013, 53, 585–592. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed. Sci. Technol. 2005, 9–30. [Google Scholar] [CrossRef]
- Kim, H.B.; Borewicz, K.; White, B.A.; Singer, R.S.; Sreevatsan, S.; Tu, Z.J.; Isaacson, R.E. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 2011, 153, 124–133. [Google Scholar] [CrossRef] [PubMed]
- McBurney, M.I.; Thompson, L.U. Effect of human faecal donor on in vitro fermentation variables. Scand. J. Gastroenterol. 1989, 24, 359–367. [Google Scholar] [CrossRef] [PubMed]
Item | ARS | MRS | SEM 2 | Substrates | SEM | p-Values 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 mL | 75 mL | 30 mL | 75 mL | cDDGS | SBH | Sub | Sys | Vol | Sys × Vol | |||
Fermentation kinetics | ||||||||||||
N 4 | 8 | 8 | 8 | 8 | 20 | 20 | ||||||
Gf 5 | 332 a | 256 b | 281 ab | 286 ab | 37.4 | 200 B | 362 A | 34.3 | 0.011 | 0.971 | 0.334 | 0.047 |
µ 6 | 0.04 b | 0.05 a | 0.04 ab | 0.04 ab | 0.015 | 0.02 B | 0.05 A | 0.014 | 0.012 | 0.446 | 0.544 | 0.012 |
T/2 7 | 34.34 a | 25.07 b | 27.16 ab | 28.16 ab | 7.832 | 32.02 A | 26.10 B | 7.794 | 0.028 | 0.984 | 0.977 | 0.041 |
G72 8 | 211 | 210 | 224 | 240 | 12.2 | 159 B | 285 A | 9.8 | 0.016 | 0.987 | 0.826 | 0.110 |
IVDMF 9 | 79.2 | 79.0 | 80.8 | 81.0 | 1.10 | 69.2 B | 90.9 A | 0.93 | 0.012 | 0.012 | 0.731 | 0.463 |
Fermentation metabolites, mmol/g | ||||||||||||
Acetic acid | 4.78 | 4.19 | 4.32 | 4.53 | 0.504 | 3.71 B | 5.20 A | 0.504 | 0.009 | 0.906 | 0.346 | 0.429 |
Propionic acid | 1.14 | 1.17 | 1.10 | 1.12 | 0.063 | 1.08 B | 1.18 A | 0.031 | 0.047 | 0.284 | 0.433 | 0.917 |
Butyric acid | 0.58 | 0.71 | 0.54 | 0.58 | 0.055 | 0.64 | 0.57 | 0.054 | 0.175 | 0.130 | 0.271 | 0.414 |
Valeric acid | 0.19 | 0.16 | 0.15 | 0.22 | 0.034 | 0.19 | 0.16 | 0.024 | 0.306 | 0.688 | 0.570 | 0.108 |
Total SCFA | 6.69 | 6.23 | 6.10 | 6.46 | 0.584 | 5.64 B | 7.11 A | 0.413 | 0.001 | 0.757 | 0.428 | 0.485 |
Item | ARS | MRS | SEM 2 | Substrates | SEM | p-Values 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 mL | 75 mL | 30 mL | 75 mL | cDDGS | SBH | Sub | Sys | Vol | Sys × Vol | |||
Gf 4 | 29.2 | 23.7 | 31.5 | 13.9 | 12.53 | 22.7 | 26.4 | 8.16 | 0.757 | 0.758 | 0.100 | 0.762 |
µ 5 | 43.7 | 45.7 | 50.6 | 38.5 | 14.49 | 31.2 | 58.0 | 6.06 | 0.068 | 0.985 | 0.688 | 0.941 |
T/2 6 | 32.2 | 48.9 | 55.6 | 27.0 | 16.06 | 29.1 | 52.8 | 9.20 | 0.122 | 0.958 | 0.716 | 0.590 |
G72 7 | 33.6 | 20.9 | 10.2 | 9.8 | 5.53 | 19.9 | 17.2 | 5.92 | 0.750 | 0.136 | 0.447 | 0.203 |
IVDMF 8 | 4.35 | 3.15 | 3.85 | 4.85 | 0.03 | 5.02 | 3.08 | 0.81 | 0.121 | 0.588 | 0.929 | 0.764 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-C.; Zeng, Z.; Shurson, G.C.; Urriola, P.E. Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls. Animals 2019, 9, 773. https://doi.org/10.3390/ani9100773
Jang J-C, Zeng Z, Shurson GC, Urriola PE. Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls. Animals. 2019; 9(10):773. https://doi.org/10.3390/ani9100773
Chicago/Turabian StyleJang, Jae-Cheol, Zhikai Zeng, Gerald C. Shurson, and Pedro E. Urriola. 2019. "Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls" Animals 9, no. 10: 773. https://doi.org/10.3390/ani9100773