Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms
Abstract
:1. Introduction
2. Results
2.1. Porcine Circovirus Type 3 Detection in Serum, Feces, and Oral Fluid Samples
2.2. Diverse Circulation Patterns of PCV3 in Different Farms
2.3. Porcine Circovirus Type 3 in Fetal Material from Cases of Reproductive Failure
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. DNA Extraction and qPCR
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franzo, G.; Delwart, E.; Fux, R.; Hause, B.; Su, S.; Zhou, J.; Segalés, J. Genotyping Porcine Circovirus 3 (PCV-3) Nowadays: Does It Make Sense? Viruses 2020, 12, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol. J. 2016, 13, 184. [Google Scholar] [CrossRef] [Green Version]
- Palinski, R.; Pineyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. J. Virol. 2017, 91, e01879-16. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, T.; Niu, G.; Liu, X.; Zhang, X.; Zhang, Y.; Ren, L. Recent progress on porcine circovirus type 3. Infect. Genet. Evol. 2019, 73, 227–233. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, D.; Wang, J.; Zhu, S.; She, R.; Ren, X.; Tian, J.; Quan, R.; Hou, L.; Li, Z.; et al. Induction of Porcine Dermatitis and Nephropathy Syndrome in Piglets by Infection with Porcine Circovirus Type 3. J. Virol. 2019, 93, e02045-18. [Google Scholar] [CrossRef] [Green Version]
- Arruda, B.; Piñeyro, P.; Derscheid, R.; Hause, B.; Byers, E.; Dion, K.; Long, D.; Sievers, C.; Tangen, J.; Williams, T.; et al. PCV3-associated disease in the United States swine herd. Emerg. Microbes Infect. 2019, 8, 684–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedkovid, R.; Woonwong, Y.; Arunorat, J.; Sirisereewan, C.; Sangpratum, N.; Lumyai, M.; Kesdangsakonwut, S.; Teankum, K.; Jittimanee, S.; Thanawongnuwech, R. Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Vet. Microbiol. 2018, 215, 71–76. [Google Scholar] [CrossRef]
- Shen, H.; Liu, X.; Zhang, P.; Wang, L.; Liu, Y.; Zhang, L.; Liang, P.; Song, C. Genome characterization of a porcine circovirus type 3 in South China. Transbound. Emerg. Dis. 2017, 65, 264–266. [Google Scholar] [CrossRef]
- Klaumann, F.; Franzo, G.; Sohrmann, M.; Correa-Fiz, F.; Drigo, M.; Nunez, J.I.; Sibila, M.; Segales, J. Retrospective detection of Porcine circovirus 3 (PCV-3) in pig serum samples from Spain. Transbound. Emerg. Dis. 2018, 65, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Zhai, S.L.; Zhou, X.; Zhang, H.; Hause, B.M.; Lin, T.; Liu, R.; Chen, Q.L.; Wei, W.K.; Lv, D.H.; Wen, X.H.; et al. Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol. J. 2017, 14, 222. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.H.; Mai, K.J.; Zhou, L.; Wu, R.T.; Tang, X.Y.; Wu, J.L.; He, L.L.; Lan, T.; Xie, Q.M.; Sun, Y.; et al. Detection and genome sequencing of porcine circovirus 3 in neonatal pigs with congenital tremors in South China. Transbound. Emerg. Dis. 2017, 64, 1650–1654. [Google Scholar] [CrossRef]
- Faccini, S.; Barbieri, I.; Gilioli, A.; Sala, G.; Gibelli, L.R.; Moreno, A.; Sacchi, C.; Rosignoli, C.; Franzini, G.; Nigrelli, A. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound. Emerg. Dis. 2017, 64, 1661–1664. [Google Scholar] [CrossRef]
- Fan, S.; Ku, X.; Chen, F.; Wang, Y.; Yu, X.; He, Q. Complete Genome Sequence of a Novel Porcine Circovirus Type 3 Strain, PCV3/ CN/Hubei-618/2016, Isolated from China. Genome Announc. 2017, 13, e00100-17. [Google Scholar] [CrossRef] [Green Version]
- Ku, X.; Chen, F.; Li, P.; Wang, Y.; Yu, X.; Fan, S.; Qian, P.; Wu, M.; He, Q. Identification and genetic characterization of porcine circovirus type 3 in China. Transbound. Emerg. Dis. 2017, 64, 703–708. [Google Scholar] [CrossRef]
- Tochetto, C.; Lima, D.A.; Varela, A.P.M.; Loiko, M.R.; Paim, W.P.; Scheffer, C.M.; Herpich, J.I.; Cerva, C.; Schmitd, C.; Cibulski, S.P.; et al. Full-genome sequence of porcine circovirus type 3 recovered from serum of sows with stillbirths in Brazil. Transbound. Emerg. Dis. 2017, 65, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Dal Santo, A.C.; Cezario, K.C.; Bennemann, P.E.; Machado, S.A.; Martins, M. Full-genome sequences of porcine circovirus 3 (PCV3) and high prevalence in mummified fetuses from commercial farms in Brazil. Microb. Pathog. 2020, 141, 104027. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, J.Y.; Jung, J.Y.; Kim, H.Y.; Park, Y.R.; Lee, K.K.; Lyoo, Y.S.; Yeo, S.G.; Park, C.K. Detection and genetic characterization of porcine circovirus 3 from aborted fetuses and pigs with respiratory disease in Korea. J. Vet. Sci. 2018, 19, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Yuzhakov, A.G.; Raev, S.A.; Alekseev, K.P.; Grebennikova, T.V.; Verkhovsky, O.A.; Zaberezhny, A.D.; Aliper, T.I. First detection and full genome sequence of porcine circovirus type 3 in Russia. Virus Genes 2018, 54, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Deim, Z.; Dencso, L.; Erdélyi, I.; Valappil, S.K.; Varga, C.; Pósa, A.; Makrai, L.; Rákhely, G. Porcine circovirus type 3 detection in a Hungarian pig farm experiencing reproductive failures. Vet. Rec. 2019, 185, 84. [Google Scholar] [CrossRef]
- Mora-Diaz, J.; Pineyro, P.; Shen, H.; Schwartz, K.; Vannucci, F.; Li, G.; Arruda, B.; Giménez-Lirola, L. Isolation of PCV3 from Perinatal and Reproductive Cases of PCV3-Associated Disease and In Vivo Characterization of PCV3 Replication in CD/CD Growing Pigs. Viruses 2020, 12, 219. [Google Scholar] [CrossRef] [Green Version]
- Stadejek, T.; Wozniak, A.; Milek, D.; Biernacka, K. First detection of porcine circovirus type 3 (PCV3) on commercial pig farms in Poland. Transbound. Emerg. Dis. 2017, 64, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Milek, D.; Baska, P.; Stadejek, T. Does porcine circovirus type 3 (PCV3) interfere with porcine circovirus type 2 (PCV2) vaccine efficacy? Transbound. Emerg. Dis. 2019, 66, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Yoo, S.J.; Park, C.K.; Lyoo, Y.S. Prevalence of novel porcine circovirus 3 in Korean pig populations. Vet. Microbiol. 2017, 207, 178–180. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, X.; Zhang, L.; Xin, C.; Liu, Y.; Shi, J.; Peng, Z.; Xu, S.; Fu, F.; Yu, J.; et al. The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound. Emerg. Dis. 2017, 64, 1337–1341. [Google Scholar] [CrossRef]
- Saraiva, G.L.; Vidigal, P.M.P.; Assao, V.S.; Fajardo, M.L.M.; Loreto, A.N.S.; Fietto, J.L.R.; Bressan, G.C.; Lobato, Z.I.P.; Almeida, M.R.; Silva-Junior, A. Retrospective Detection and Genetic Characterization of Porcine circovirus 3 (PCV3) Strains Identified between 2006 and 2007 in Brazil. Viruses 2019, 11, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Li, X.; Deng, R.; Zhang, G. Detection and genetic characteristics of porcine circovirus 3 based on oral fluids from asymptomatic pigs in central China. BMC Vet. Res. 2019, 15, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prickett, J.R.; Zimmerman, J.J. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim. Health Rev. 2010, 11, 201–216. [Google Scholar] [CrossRef]
- Ramirez, A.; Wang, C.; Prickett, J.R.; Pogranichniy, R.; Yoon, K.J.; Main, R.; Johnson, J.K.; Rademacher, C.; Hoogland, M.; Hoffmann, P.; et al. Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med. 2012, 104, 292–300. [Google Scholar] [CrossRef]
- Hernandez-Garcia, J.; Robben, N.; Magnée, D.; Eley, T.; Dennis, I.; Kayes, S.M.; Thomson, J.R.; Tucker, A.W. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porc. Health Manag. 2017, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Biernacka, K.; Karbowiak, P.; Wrobel, P.; Chareza, T.; Czopowicz, M.; Balka, G.; Goodell, C.; Rauh, R.; Stadejek, T. Detection of porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) in oral fluid of pigs. Res. Vet. Sci. 2016, 109, 74–80. [Google Scholar] [CrossRef]
- Wozniak, A.; Milek, D.; Matyba, P.; Stadejek, T. Real-time PCR detection patterns of porcine circovirus type 2 (PCV2) in Polish farms with different status of vaccination against PCV2. Viruses 2019, 11, 1135. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Ohshima, Y.; Furuya, Y.; Nagao, A.; Oroku, K.; Tsutsumi, N.; Sasakawa, C.; Sato, T. First detection of porcine circovirus type 3 in Japan. J. Vet. Med. Sci. 2018, 80, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedkovid, R.; Woonwong, Y.; Arunorat, J.; Sirisereewan, C.; Sangpratum, N.; Kesdangsakonwut, S.; Tummaruk, P.; Teankum, K.; Assavacheep, P.; Jittimanee, S.; et al. Porcine circovirus type 3 (PCV3) shedding in sow colostrum. Vet. Microbiol. 2018, 220, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Chae, C. First isolation and genetic characterization of porcine circovirus type 3 using primary porcine kidney cells. Vet. Microbiol. 2020, 241, 108576. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.S.; Hjulsager, C.K.; Bille-Hansen, V.; Haugegaard, S.; Dupont, K.; Høgedal, P.; Kunstmann, L.; Larsen, L.E. Selection of method is crucial for the diagnosis of porcine circovirus type 2 associated reproductive failures. Vet. Microbiol. 2010, 144, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Segales, J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Milek, D.; Wozniak, A.; Guzowska, M.; Stadejek, T. Detection patterns of porcine parvovirus (PPV) and novel porcine parvoviruses 2 through 6 (PPV2-PPV6) in Polish swine farms. Viruses 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadejek, T.; Larsen, L.E.; Podgorska, K.; Botner, A.; Botti, S.; Dolka, I.; Fabisiak, M.; Heegaard, P.M.H.; Hjulsager, C.K.; Huc, T.; et al. Pathogenicity of three genetically diverse strains of PRRSV Type 1 in specific pathogen free pigs. Vet. Microbiol. 2017, 209, 13–19. [Google Scholar] [CrossRef]
Farm ID | Herd Size | Vaccination Against PCV2 | % of PCV3-Positive Samples (Positive/All Tested) | ||
---|---|---|---|---|---|
PCV3 Viral Load: (Minimum-Maximum; Median) [log10 Genome Equivalent Copies/mL] | |||||
Serum | Feces | Oral Fluid | |||
KR | 8200 | Piglets | 3.8, (3/80) | 6.3 (5/80) | 33.3 (6/18) |
4.1–4.6; 4.3 | 2.8–3.1; 3.0 | 3.0–5.1; 3.4 | |||
AK | 20-30 | None | 27.4 (20/73) | 12.3 (9/73) | 15.8 (3/19) |
2.7–6.0; 4.5 | 2.9–3.5; 3.2 | 4.3–4.8; 4.6 | |||
KU | 65 | Sows, piglets | 13.3 (8/60) | 0.0 (0/60) | 13.3 (2/15) |
3.2–4.9; 4.4 | 2.8–6.4; 4.6 | ||||
BY | 5000 | Piglets | 11.3 (9/80) | 12.5 (10/80) | 43.8 (7/16) |
3.1–5.9; 3.8 | 3.2–5.0; 3.6 | 3.0–4.7; 4.2 | |||
SU | 100 | Sows, piglets | 11.7 (7/60) | 50.0 (30/60) | 28.6 (4/14) |
3.9–5.2; 4.5 | 3.5–5.1; 4.7 | 4.9–5.6; 5.4 | |||
MI | 500 | Sows, piglets | 15.5 (9/58) | 12.1 (7/58) | 30.8 (4/13) |
3.0–5.9; 3.5 | 2.9–4.1; 3.3 | 3.1–5.7; 3.6 | |||
KS* | 180 | Piglets | 26.7 (16/60) | 16.7 (10/60) | 85.7 (6/7) |
3.2–5.5; 4.6 | 2.7–3.5; 3.4 | 3.5–5.6; 4.9 | |||
C | 220 | Piglets | 12.0 (6/50) | 10.0 (5/50) | 33.3 (2/6) |
3.2–5.2; 4.3 | 3.7–4.7; 4.1 | 2.5–5.7; 4.1 | |||
PA* | 1000 | Piglets | 15.0 (12/80) | 20.0 (16/80) | 100 (16/16) |
2.7–5.1; 3.7 | 2.7–6.7; 3.9 | 3.0–6.6; 4.2 | |||
PB | 2300 | Sows, piglets | 11.4 (8/70) | 37.1 (26/70) | 88.2 (15/17) |
2.8–5.1; 4.5 | 2.7–4.6; 3.6 | 2.9–5.3; 3.5 | |||
GN | 2250 | Sows, piglets | 4.0 (2/50) | 14.0 (7/50) | 41.2 (7/17) |
4.5–5.0; 4.8 | 3.1–4.9; 4.0 | 3.6–6.1; 4.4 | |||
DO | 1800 | Sows, piglets | 11.3 (9/80) | 12.5 (10/80) | 41.2 (7/17) |
3.3–5.0; 3.7 | 3.1–4.2; 3.4 | 3.1–4.9; 3.4 | |||
ZA* | 4950 | Piglets | 3.8 (3/80) | 27.5 (22/80) | 41.2 (7/17) |
3.0–3.4; 3.4 | 3.2–4.6; 3.7 | 3.6–5.2; 4.7 | |||
BA | 600 | Piglets | 1.3 (1/80) | 6.3 (5/80) | 16.7 (3/18) |
4.3 | 2.6–3.9; 3.5 | 3.5–4.7; 4.0 | |||
B | 220 | None | 2.9 (2/70) | 7.1 (5/70) | 12.5 (2/16) |
4.5–4.9; 4.7 | 3.4–4.0; 3.7 | 3.6–4.3; 4.0 | |||
PR* | 390 | Sows, piglets | 17.5 (14/80) | 46.3 (37/80) | 50.0 (9/18) |
3.3–5.7; 4.6 | 3.4–4.9; 4.2 | 3.8–7.2; 5.7 | |||
WA | 200 | None | 4.0 (2/50) | 0.0 (0/50) | 21.4 (3/14) |
3.5–4.8; 4.2 | 2.8–3.6; 3.0 | ||||
WT | 650 | Sows, piglets | 3.3 (2/60) | 0.0 (0/60) | 31.6 (6/19) |
3.4–5.5; 4.5 | 2.6–3.6; 3.1 | ||||
AG | 2400 | Piglets | 5.0 (4/80) | 11.3 (9/80) | 23.5 (4/17) |
2.5–4.0; 3.5 | 2.5–3.8; 2.8 | 3.2–5.3; 4.2 | |||
RO | 800 | Piglets | 1.4 (1/70) | 0.0 (0/70) | 18.8 (3/16) |
4.4 | 3.4–4.0; 3.7 | ||||
GR | 3800 | Piglets | 3.8 (3/80) | 5.0 (4/80) | 35.3 (6/17) |
3.4–5.1; 4.2 | 2.8–4.4; 3.5 | 3.4–4.4; 4.0 | |||
TOTAL | 9.7 (141/1451) | 15.0 (217/1451) | 37.3 (122/327) | ||
2.5–6.0; 4.3 | 2.5–6.7; 3.7 | 2.5–7.2; 4.1 |
Farm ID | PCV3 | PCV2 | PRRSV | ||
---|---|---|---|---|---|
% of Positive Stillborn Piglets or Aborted Fetuses (Positive/All Tested) | Viral Loads in Fetal Samples (Minimum-Maximum; Median) [log10 Genome Equivalent Copies/mL] | % of Positive Stillborn Piglets or Aborted Fetuses (Positive/All Tested) | Viral Loads in Fetal Samples (Minimum-Maximum; Median) [log10 Genome Equivalent Copies/mL] | % of Positive Stillborn Piglets or Aborted Fetuses (Positive/All Tested) | |
KS | 23.1 (3/13) | 3.5–3.8, 3.6 | 38.5 (5/13) | 3.8–5.5; 4.6 | 0.0 (0/13) |
PR | 100.0 (4/4) | 4.6–10.4; 6.5 | 25.0 (1/4) | 4.0 | 0.0 (0/4) |
PA | 50.0 (1/2) | 3.6 | 0.0 (0/2) | - | 0.0 (0/2) |
ZA | 16.7 (1/6) | 3.1 | 0.0 (0/6) | - | 0.0 (0/6) |
TOTAL | 36.0 (9/25) | 3.1–10.4; 5.2 | 24.0 (6/25) | 3.8–5.5; 4.4 | 0.0 (0/25) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, A.; Miłek, D.; Stadejek, T. Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms. Pathogens 2020, 9, 411. https://doi.org/10.3390/pathogens9050411
Woźniak A, Miłek D, Stadejek T. Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms. Pathogens. 2020; 9(5):411. https://doi.org/10.3390/pathogens9050411
Chicago/Turabian StyleWoźniak, Aleksandra, Dagmara Miłek, and Tomasz Stadejek. 2020. "Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms" Pathogens 9, no. 5: 411. https://doi.org/10.3390/pathogens9050411