Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Population
2.3. Sample Collection, Handling, Bacterial Isolation and Identification
2.4. Antimicrobial Susceptibility Testing
2.5. Molecular Genotype Testing
2.6. Genomic Analyses
2.7. Ethical Approval
3. Results
3.1. Patient Data
3.2. Empirical Antibiotic Therapy
3.3. Staphylococcus aureus (MRSA and MSSA) Isolated from Hospital Patients
3.4. Antimicrobial Resistance Profiles of the Isolated Staphylococcus aureus (MRSA and MSSA)
3.5. Clonal Complexes of the Staphylococcus aureus Isolates
3.6. Virulence Factors in the Isolated Staphylococcus aureus
3.7. MRSA Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, T.C. Livestock-associated Staphylococcus aureus: The United States experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef] [PubMed]
- El Aila, N.A.; Al Laham, N.A.; Ayesh, B.M. Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at Al Shifa hospital in Gaza Strip. BMC Infect. Dis. 2017, 17, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azeez, A. Global trend of Methicillin-resistant Staphlococcus aureus and emerging challenges for control. Afr. J. Clin. Exp. Microbiol. 2010, 11, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.N.; Srirama, K.; Dirisala, V.R. An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus. Infect. Dis. 2017, 10, 1179916117703999. [Google Scholar] [CrossRef] [Green Version]
- McCormick, J.K.; Yarwood, J.M.; Schlievert, P.M. Toxic shock syndrome and bacterial superantigens: An update. Annu. Rev. Microbiol. 2001, 55, 77–104. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- McGrath, B.; Rutledge, F.; Broadfield, E. Necrotising Pneumonia, Staphylococcus aureus and Panton-Valentine Leukocidin. J. Intensive Care Soc. 2008, 9, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Du, X.; Villaruz, A.E.; Diep, B.A.; Wang, D.; Song, Y.; Tian, Y.; Hu, J.; Yu, F.; Lu, Y.; et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med. 2012, 18, 816–819. [Google Scholar] [CrossRef]
- Kaur, D.C.; Chate, S.S. Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus aureus with Special Reference to Newer Antibiotic. J. Glob. Infect. Dis. 2015, 7, 78–84. [Google Scholar] [CrossRef]
- Malhotra-Kumar, S.; Haccuria, K.; Michiels, M.; Ieven, M.; Poyart, C.; Hryniewicz, W.; Goossens, H. Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococcus species. J. Clin. Microbiol. 2008, 46, 1577–1587. [Google Scholar] [CrossRef]
- Cheng, G.; Dai, M.; Ahmed, S.; Hao, H.; Wang, X.; Yuan, Z. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front. Microbiol. 2016, 7, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, D.L.; Rice, L.B. Empirical antibiotic choice for the seriously ill patient: Are minimization of selection of resistant organisms and maximization of individual outcome mutually exclusive? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2003, 36, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlemann, A.-C.; Otto, M.; Lowy, F.D.; DeLeo, F.R. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 21, 563–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-J.; Huang, Y.-C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 605–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Rasigade, J.-P.; Dumitrescu, O.; Lina, G. New epidemiology of Staphylococcus aureus infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 587–588. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg, R.H.; Vink, C.; Kalenic, S.; Friedrich, A.W.; Bruggeman, C.A.; Stobberingh, E.E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2007, 13, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Denis, O.; Deplano, A.; Nonhoff, C.; De Ryck, R.; de Mendonça, R.; Rottiers, S.; Vanhoof, R.; Struelens, M.J. National surveillance of methicillin-resistant Staphylococcus aureus in Belgian hospitals indicates rapid diversification of epidemic clones. Antimicrob. Agents Chemother. 2004, 48, 3625–3629. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Correia, B.; de Lencastre, H. Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: Surveillance over a 16-year period. J. Clin. Microbiol. 2008, 46, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.F.; Marco-Jimenez, F.; Duncan, D.; Marín, C.; Smith, R.P.; Evans, S.J. Livestock-Associated Methicillin-Resistant Staphylococcus aureus From Animals and Animal Products in the UK. Front. Microbiol. 2019, 10, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, A.O. Assessment of patient satisfaction levels in a County Referral Hospital: A case of County Referral Hospital. Baraton Interdiscip. Res. J. 2017, 7, 1–7. [Google Scholar]
- Wang, M.; Wei, H.; Zhao, Y.; Shang, L.; Di, L.; Lyu, C.; Liu, J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn. J. Basic Med. Sci. 2019, 19, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Koletsi, P.K.; Bliziotis, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 2006, 55, 1619–1629. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.-O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Coll, F.; Raven, K.E.; Knight, G.M.; Blane, B.; Harrison, E.M.; Leek, D.; Enoch, D.A.; Brown, N.M.; Parkhill, J.; Peacock, S.J. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: A genomic epidemiology analysis. Lancet Microbe 2020, 1, e328–e335. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.J.; Bacigalupe, R.; Harrison, E.; Weinert, L.A.; Lycett, S.; Vrieling, M.; Robb, K.; Hoskisson, P.A.; Holden, M.T.G.; Feil, E.J.; et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecol. Evol. 2018, 2, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Dai, Z.; Guo, P.; Fu, X.; Liu, S.; Zhou, L.; Tang, W.; Feng, T.; Chen, M.; Zhan, L.; et al. GgtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data. Mol. Biol. Evol. 2021, 38, 4039–4042. [Google Scholar] [CrossRef]
- Aiken, A.M.; Mutuku, I.M.; Sabat, A.J.; Akkerboom, V.; Mwangi, J.; Scott, J.A.G.; Morpeth, S.C.; Friedrich, A.W.; Grundmann, H. Carriage of Staphylococcus aureus in Thika Level 5 Hospital, Kenya: A cross-sectional study. Antimicrob. Resist. Infect. Control. 2014, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Bebell, L.M.; Ayebare, A.; Boum, Y.; Siedner, M.J.; Bazira, J.; Schiff, S.J.; Metlay, J.P.; Bangsberg, D.R.; Ttendo, S.; Firth, P.G. Prevalence and correlates of MRSA and MSSA nasal carriage at a Ugandan regional referral hospital. J. Antimicrob. Chemother. 2017, 72, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Egyir, B.; Guardabassi, L.; Sørum, M.; Nielsen, S.S.; Kolekang, A.; Frimpong, E.; Addo, K.K.; Newman, M.J.; Larsen, A.R. Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from healthcare institutions in Ghana. PLoS ONE 2014, 9, e89716. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, A.-S.; Dunyach-Remy, C.; Kissou, A.; Sanou, S.; Poda, A.; Kyelem, C.G.; Solassol, J.; Bañuls, A.-L.; Van De Perre, P.; Ouédraogo, R.; et al. High nasal carriage rate of Staphylococcus aureus containing panton-valentine leukocidin- and EDIN-encoding genes in community and hospital settings in Burkina Faso. Front. Microbiol. 2016, 7, 1406. [Google Scholar] [CrossRef] [Green Version]
- Weterings, V.; Veenemans, J.; van Rijen, M.; Kluytmans, J. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus in patients at hospital admission in The Netherlands, 2010-2017, an observational study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, e1–e1428. [Google Scholar] [CrossRef]
- Hidron, A.I.; Kourbatova, E.V.; Halvosa, J.S.; Terrell, B.J.; McDougal, L.K.; Tenover, F.C.; Blumberg, H.M.; King, M.D. Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: Emergence of community-associated MRSA nasal carriage. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 41, 159–166. [Google Scholar] [CrossRef]
- Han, Z.; Lautenbach, E.; Fishman, N.; Nachamkin, I. Evaluation of mannitol salt agar, CHROMagar Staph aureus and CHROMagar MRSA for detection of meticillin-resistant Staphylococcus aureus from nasal swab specimens. J. Med. Microbiol. 2007, 56, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, P.; Grattard, F.; Carricajo, A.; Pozzetto, B.; Berthelot, P. Better Detection of Staphylococcus aureus Nasal Carriage by Use of Nylon Flocked Swabs. J. Clin. Microbiol. 2010, 48, 4242–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulwa, N.; Osanjo, G.; Ndwigah, S.; Kaburi, A.; Muriuki, G. Patterns of Prescribing Practices in Makueni County Referral Hospital, Kenya. Afr. J. Pharmacol. Ther. 2015, 4, 161–168. [Google Scholar]
- Okoth, C.; Opanga, S.; Okalebo, F.; Oluka, M.; Baker Kurdi, A.; Godman, B. Point prevalence survey of antibiotic use and resistance at a referral hospital in Kenya: Findings and implications. Pract. 2018, 46, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Maina, M.; Mwaniki, P.; Odira, E.; Kiko, N.; McKnight, J.; Schultsz, C.; English, M.; Tosas-Auguet, O. Antibiotic use in Kenyan public hospitals: Prevalence, appropriateness and link to guideline availability. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 99, 10–18. [Google Scholar] [CrossRef]
- Paramythiotou, E.; Routsi, C. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J. Crit. Care Med. 2016, 5, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Oosthuysen, W.F.; Orth, H.; Lombard, C.J.; Sinha, B.; Wasserman, E. Population structure analyses of Staphylococcus aureus at Tygerberg Hospital, South Africa, reveals a diverse population, a high prevalence of Panton-Valentine leukocidin genes, and unique local methicillin-resistant S. aureus clones. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Breurec, S.; Zriouil, S.; Fall, C.; Boisier, P.; Brisse, S.; Djibo, S.; Etienne, J.; Fonkoua, M.; Perrier-Gros-Claude, J.; Pouillot, R.; et al. Epidemiology of methicillin-resistant Staphylococcus aureus lineages in five major African towns: Emergence and spread of atypical clones. Clin. Microbiol. Infect. 2011, 17, 160–165. [Google Scholar] [CrossRef]
- Schaumburg, F.; Ngoa, U.A.; Sters, K.K.; Köck, R.; Adegnika, A.; Kremsner, P.; Lell, B.; Peters, G.; Mellmann, A.; Becker, K. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Zumla, A.; Superantigens, T. Cells, and Microbes. Clin. Infect. Dis. 1992, 15, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kyany’A, C.; Nyasinga, J.; Matano, D.; Oundo, V.; Wacira, S.; Sang, W.; Musila, L. Phenotypic and genotypic characterization of clinical Staphylococcus aureus isolates from Kenya. BMC Microbiol. 2019, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Gitau, W.; Masika, M.; Musyoki, M.; Museve, B.; Mutwiri, T. Antimicrobial susceptibility pattern of Staphylococcus aureus isolates from clinical specimens at Kenyatta National Hospital. BMC Res. Notes 2018, 11, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omuse, G.; Kariuki, S.; Revathi, G. Unexpected absence of meticillin-resistant Staphylococcus aureus nasal carriage by healthcare workers in a tertiary hospital in Kenya. J. Hosp. Infect. 2012, 80, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Maina, E.K.; Kiiyukia, C.; Wamae, C.N.; Waiyaki, P.G.; Kariuki, S. Characterization of methicillin-resistant Staphylococcus aureus from skin and soft tissue infections in patients in Nairobi, Kenya. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2013, 17, e115–e119. [Google Scholar] [CrossRef] [Green Version]
- van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [Green Version]
- Avershina, E.; Shapovalova, V.; Shipulin, G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front. Microbiol. 2021, 12, 707330. [Google Scholar] [CrossRef]
- Karam, G.; Chastre, J.; Wilcox, M.H.; Vincent, J.-L. Antibiotic strategises in the era of multidrug resistance. Crit. Care 2016, 20, 136. [Google Scholar] [CrossRef] [Green Version]
- Mehl, A.; Åsvold, B.O.; Kümmel, A.; Lydersen, S.; Paulsen, J.; Haugan, I.; Solligård, E.; Damås, J.K.; Harthug, S.; Edna, T.-H. Trends in antimicrobial resistance and empiric antibiotic therapy of bloodstream infections at a general hospital in Mid-Norway: A prospective observational study. BMC Infect. Dis. 2017, 17, 116. [Google Scholar] [CrossRef] [Green Version]
- Aires-de-Sousa, M.; Rodrigues, S.; Conceição, T.; de Lencastre, H. Evaluation of Different Screening Methodologies for the Detection of Methicillin-Resistant Staphylococcus aureus from Environmental Surfaces: Swabs, Gauzes, and Polywipes. Microb. Drug Resist. 2018, 24, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Sowash, M.G.; Uhlemann, A.-C. Community-associated methicillin-resistant Staphylococcus aureus case studies. Methods Mol. Biol. 1085, 25–69. [Google Scholar] [CrossRef] [Green Version]
- Ruimy, R.; Maiga, A.; Armand-Lefevre, L.; Maiga, I.; Diallo, A.; Koumaré, A.K.; Ouattara, K.; Soumaré, S.; Gaillard, K.; Lucet, J.-C.; et al. The carriage population of Staphylococcus aureus from Mali is composed of a combination of pandemic clones and the divergent Panton-Valentine leukocidin-positive genotype ST152. J. Bacteriol. 2008, 190, 3962–3968. [Google Scholar] [CrossRef]
- Lawal, O.U.; Ayobami, O.; Abouelfetouh, A.; Mourabit, N.; Kaba, M.; Egyir, B.; Abdulgader, S.M.; Shittu, A.O. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front. Microbiol. 2022, 13, 860436. [Google Scholar] [CrossRef] [PubMed]
- OObanda, B.A.; Gibbons, C.L.; Fèvre, E.M.; Bebora, L.; Gitao, G.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Blane, B.; et al. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics 2022, 11, 1726. [Google Scholar] [CrossRef]
- Kalee, N.E.; Gahamanyi, N.; Hoza, A.S. Prevalence and antimicrobial susceptibility profiles of Staphylococcus aureus from raw bovine milk in dairy and pastoral farms in Morogoro region, Tanzania. Ger. J. Vet. Res. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Benrabia, I.; Hamdi, T.M.; Shehata, A.A.; Neubauer, H.; Wareth, G. Methicillin-resistant Staphylococcus aureus (MRSA) in poultry species in algeria: Long-term study on prevalence and antimicrobial resistance. Vet. Sci. 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.; Petersen, A.; Sørum, M.; Stegger, M.; van Alphen, L.; Valentiner-Branth, P.; Knudsen, L.K.; Larsen, L.S.; Feingold, B.; Price, L.B.; et al. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2015, 20, 30021. [Google Scholar] [CrossRef] [Green Version]
- Pantosti, A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front. Microbiol. 2012, 3, 127. [Google Scholar] [CrossRef]
Medical n = 91 | Surgical n = 119 | Pediatrics and Amenity n = 53 | Total n = 263 | |
---|---|---|---|---|
Treated with antibiotics | 74 (81.3%) | 110 (92.4%) | 42 (79.2%) | 226 (85.9%) |
Treated with 2 antibiotics | 35 (38.5%) | 90 (75.6%) | 25 (47.2%) | 150 (57.0%) |
Ceftriaxone | 56 (61.5%) | 96 (80.7%) | 21 (39.6%) | 173 (65.8%) |
Metronidazole | 22 (24.2%) | 95 (79.8%) | 14 (26.4%) | 131 (49.8%) |
Penicillin-G | 2 (2.2%) | 2 (1.7%) | 17 (32.1%) | 21 (8.0%) |
Ciprofloxacin | 10 (11.0%) | 1 (0.8%) | 1 (1.9%) | 12 (4.6%) |
Gentamicin | 10 (18.9%) | 10 (3.8%) | ||
Erythromycin | 7 (7.7%) | 7 (2.7%) |
Sequence Type | Clonal Complex | Total | PVL Positive | TSST Positive |
---|---|---|---|---|
ST152 | CC152 | 5 | 4 | |
ST1633 | CC152 | 1 | 1 | |
ST8 | CC8 | 5 | ||
ST80 | CC80 | 3 | ||
ST188 | CC1 | 2 | ||
ST573 | CC1 | 1 | ||
ST22 | CC22 | 2 | 2 | |
ST25 | CC25 | 1 | ||
ST508 | CC508 | 5 | 5 | |
ST580 | 2 | |||
ST5 | CC5 | 1 | 1 | |
ST241 * | CC8 | 1 | ||
ST140 | CC398 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obanda, B.A.; Cook, E.A.J.; Fèvre, E.M.; Bebora, L.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Wandede, D.; Muyodi, J.; et al. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens 2022, 11, 1504. https://doi.org/10.3390/pathogens11121504
Obanda BA, Cook EAJ, Fèvre EM, Bebora L, Ogara W, Wang S-H, Gebreyes W, Ngetich R, Wandede D, Muyodi J, et al. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens. 2022; 11(12):1504. https://doi.org/10.3390/pathogens11121504
Chicago/Turabian StyleObanda, Benear Apollo, Elizabeth A. J. Cook, Eric M. Fèvre, Lilly Bebora, William Ogara, Shu-Hua Wang, Wondwossen Gebreyes, Ronald Ngetich, Dolphine Wandede, Johnstone Muyodi, and et al. 2022. "Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya" Pathogens 11, no. 12: 1504. https://doi.org/10.3390/pathogens11121504