Buildings 2013, 3(1), 18-38; doi:10.3390/buildings3010018
Article

Theoretical and Experimental Investigation of a Heat Exchanger Suitable for a Hybrid Ventilation System

Department of Architecture and Built Environment, Division of Energy and Building Design, Lund University, Box 118, 221 00 Lund, Sweden
* Author to whom correspondence should be addressed.
Received: 12 October 2012; in revised form: 21 December 2012 / Accepted: 4 January 2013 / Published: 14 January 2013
PDF Full-text Download PDF Full-Text [604 KB, Updated Version, uploaded 16 January 2013 15:29 CET]
The original version is still available [612 KB, uploaded 14 January 2013 15:36 CET]
Abstract: A key component in low energy houses is the heat recovery from the ventilation air. Over recent years, the most frequently used ventilation type is the mechanical ventilation with heat recovery. This kind of ventilation results in high heat recovery but does unfortunately consume a considerable amount of electrical energy. Natural or hybrid ventilation has the potential to consume less electricity but normally lacks heat recovery, leading to high-energy consumption for heating, and potentially low comfort. This article describes an investigation of a natural/hybrid ventilation system equipped with heat recovery. One of the key challenges in designing the heat exchanger is to keep the pressure drop low. At the same time the heat recovery rate has to be high. The results from the measurements show that it is possible to design a water-to-air heat exchanger with a temperature efficiency of approximately 80% with a pressure drop of about 1 Pa at air flows corresponding to 0.35 L/(s∙m²) building area. This type of ventilation system has the potential to offer a high thermal comfort, high heat recovery rate at the same time as the electrical consumption from fans is kept low. Old buildings with a natural ventilation system without heat recovery could also be retrofitted with this type of ventilation system.
Keywords: hybrid ventilation; heat recovery; low pressure drop

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Davidsson, H.; Bernardo, R.; Hellström, B. Theoretical and Experimental Investigation of a Heat Exchanger Suitable for a Hybrid Ventilation System. Buildings 2013, 3, 18-38.

AMA Style

Davidsson H, Bernardo R, Hellström B. Theoretical and Experimental Investigation of a Heat Exchanger Suitable for a Hybrid Ventilation System. Buildings. 2013; 3(1):18-38.

Chicago/Turabian Style

Davidsson, Henrik; Bernardo, Ricardo; Hellström, Bengt. 2013. "Theoretical and Experimental Investigation of a Heat Exchanger Suitable for a Hybrid Ventilation System." Buildings 3, no. 1: 18-38.

Buildings EISSN 2075-5309 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert