The Impact of Dynamic Risk Interdependencies on the Saudi Precast Concrete Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Studies of PCA Risk Factors
2.2. Studies on Methods of Risk Analysis Dynamic Bayesian Networks (DBNs)
2.3. Knowledge Gap
- To identify all risks associated with precast productivity, assuming quality would have a minimum impact.
- To assign these individual risks to their stages and find the impact of these risks per stage.
3. Methodology
3.1. Identify Risk Factors
3.2. Create Interrelationships among the Risk Factors
3.3. Represent the Risk Factors’ Interrelationships by ISM and DAG
3.4. Assess the Strength Relationships among the Factors and Establish the SP and TP of the Risk Factors
3.5. Perform DBN Analysis
3.5.1. Establish CPs of the Intermediate and Leaf Nodes
3.5.2. Probabilistic Propagation
4. Results and Discussion
4.1. Influence of CPs on the Risks
4.2. Classification of the Risk Probability
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, W.; Asif, M.; Alrashed, F. Application of building performance simulation to design energy-efficient homes: Case study from Saudi Arabia. Sustainability 2019, 11, 16048. [Google Scholar] [CrossRef]
- Global Data. Saudi Arabia Construction Market Size, Trend Analysis by Sector, Competitive Landscape and Forecast, 2023–2027. Available online: https://www.globaldata.com/store/report/saudi-arabia-construction-market-analysis/ (accessed on 15 September 2023).
- Badir, Y.F.; Kadir, M.R.A.; Hashim, A.H. Industrialized Building Systems Construction in Malaysia. J. Archit. Eng. 2002, 8, 19–23. [Google Scholar] [CrossRef]
- Wasim, M.; Serra, P.V.; Ngo, T.D. Design for manufacturing and assembly for sustainable, quick and cost-effective prefabricated construction–a review. Int. J. Constr. Manag. 2022, 22, 3014–3022. [Google Scholar] [CrossRef]
- El Fattah, A.M.A.; Elfarra, A.; Ahmed, W.; Assaf, S.; Al-Ofi, K. Assessing the Factors Affecting the Use of the Precast Concrete Systems in Saudi Arabia Based on Stakeholders Survey. Arab. J. Sci. Eng. 2023, 48, 5467–5479. [Google Scholar] [CrossRef]
- Robin, C. Global Market Analysis. J. Pharm. Sci. Drug Dev. 2020, 2020, 2. [Google Scholar]
- Gibb, A.G.F.; Isack, F. Re-engineering through pre-assembly: Client expectations and drivers. Build. Res. Inf. 2003, 31, 146–160. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. Design issues of using prefabrication in hong kong building construction. Constr. Manag. Econ. 2010, 28, 1025–1042. [Google Scholar] [CrossRef]
- Pons, O.; Wadel, G. Environmental impacts of prefabricated school buildings in Catalonia. Habitat. Int. 2011, 35, 553–563. [Google Scholar] [CrossRef]
- Wong, P.S.P.; Whelan, B.; Holdsworth, S. Are contractors ready for greater use of prefabrication in projects? An empirical analysis on the role of unlearning and counter-knowledge. Int. J. Constr. Manag. 2021, 21, 353–368. [Google Scholar] [CrossRef]
- O’Hegarty, R.; Kinnane, O.; Grimes, M.; Newell, J.; Clifford, M.; West, R. Development of thin precast concrete sandwich panels: Challenges and outcomes. Constr. Build. Mater. 2021, 267, 120981. [Google Scholar] [CrossRef]
- Polat, G. Factors Affecting the Use of Precast Concrete Systems in the United States. J. Constr. Eng. Manag. 2008, 134, 169–178. [Google Scholar] [CrossRef]
- Surve, A.; Biswas, A. Risk Analysis in Precast Industry. Int. J. Res. Eng. Appl. Manag. (IJREAM) 2019, 5. [Google Scholar] [CrossRef]
- Guan, L.; Abbasi, A.; Ryan, M.J. Analyzing green building project risk interdependencies using Interpretive Structural Modeling. J. Clean. Prod. 2020, 256, 120372. [Google Scholar] [CrossRef]
- Wang, L.; Sun, T.; Qian, C.; Goh, M.; Mishra, V.K. Applying social network analysis to genetic algorithm in optimizing project risk response decisions. Inf. Sci. 2020, 512, 1024–1042. [Google Scholar] [CrossRef]
- O’connor, J.T.; Asce, M.; O’brien, W.J.; Choi, J.O. Industrial Project Execution Planning: Modularization versus Stick-Built. Pract. Period. Struct. Des. Constr. 2015, 21, 04015014. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Blismas, N.G.; Pendlebury, M.; Gibb, A.; Pasquire, C. Constraints to the use of Off-site production on construction projects. Archit. Eng. Des. Manag. 2005, 1, 153–162. [Google Scholar] [CrossRef]
- Blismas, N.; Wakefield, R. Drivers, constraints and the future of offsite manufacture in Australia. Constr. Innov. 2009, 9, 72–83. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.F.; Dainty, A.R.J. Perspective of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Leading UK housebuilders’ utilization of offsite construction methods. Build. Res. Inf. 2008, 36, 56–67. [Google Scholar] [CrossRef]
- Mao, C.; Xie, F.; Hou, L.; Wu, P.; Wang, J.; Wang, X. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat. Int. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Ye, M.; Wang, J.; Si, X.; Zhao, S.; Huang, Q. Analysis on Dynamic Evolution of the Cost Risk of Prefabricated Building Based on DBN. Sustainability 2022, 14, 1864. [Google Scholar] [CrossRef]
- Glass, J.; Pepper, C. Perceptions of precast concrete cladding in the UK market. Archit. Eng. Des. Manag. 2005, 1, 233–246. [Google Scholar] [CrossRef]
- Arditi, D.; Gunaydin, H.M. Total quality management in the construction process. Int. J. Proj. Manag. 1997, 15, 235–243. [Google Scholar] [CrossRef]
- Odeyinka, H.; Lowe, J. A Factor Approach to the Analysis of Risks Influencing Construction Cost Flow Forecast. [Online]. Available online: http://www.rics.org/cobra (accessed on 14 July 2023).
- Al-Gahtani, K.; Alsanabani, N. Impact Factors on Time and Cost in Pile Construction. Proc. Int. Struct. Eng. Constr. 2023, 10. [Google Scholar] [CrossRef]
- Zahedi, M.H.; Kashanaki, A.R.; Farahani, E. Risk management framework in Agile software development methodology. Int. J. Electr. Comput. Eng. 2023, 13, 4379–4387. [Google Scholar] [CrossRef]
- Alsanabani, N.M.; Al-Gahtani, K.S.; Almohsen, A.S.; Alsharef, A. Risk Interdependency Network Model for the Cost and Time of Pile Installation in Saudi Arabia, Using Partial Least Squares Structural Equation Modeling. Appl. Sci. 2023, 13, 10886. [Google Scholar] [CrossRef]
- Alshihri, S.; Al-gahtani, K.; Almohsen, A. Risk Factors That Lead to Time and Cost Overruns of Building Projects in Saudi Arabia. Buildings 2022, 12, 902. [Google Scholar] [CrossRef]
- Al-Gahtani, K.; Shafaay, M.; Ahmed, O.; Alawshan, M.; Alsanabani, N.; Aljadhai, S. Risk Factors for Time and Cost Overruns of Pipeline Projects in Saudi Arabia. Adv. Civ. Eng. 2023, 2023, 9497451. [Google Scholar] [CrossRef]
- Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2002. Available online: https://www.proquest.com/docview/304697812?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 31 January 2024).
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics. Commun. ACM 2002, 45, 52–57. [Google Scholar] [CrossRef]
- Queen, C.M.; Albers, C.J. Intervention and causality: Forecasting traffic flows using a dynamic bayesian network. J. Am. Stat. Assoc. 2009, 104, 669–681. [Google Scholar] [CrossRef]
- Wang, X.; Kou, X.; Huang, J.; Wang, W. Offshore drilling accident analysis based on dynamic Bayesian network. J. Phys. Conf. Ser. 2021, 2029, 012143. [Google Scholar] [CrossRef]
- Piao, Y.; Xu, W.; Wang, T.-K.; Chen, J.-H. Dynamic Fall Risk Assessment Framework for Construction Workers Based on Dynamic Bayesian Network and Computer Vision. J. Constr. Eng. Manag. 2021, 147, 04021171. [Google Scholar] [CrossRef]
- Yuan, X.; Gu, Y.; Wang, Y. Supervised deep belief network for quality prediction in industrial processes. IEEE Trans. Instrum. Meas. 2020, 70, 2503711. [Google Scholar] [CrossRef]
- Arditi, B.D.; Ergin, U.; Günhan, S. Factors Affecting the Use of Precast Concrete Systems. J. Archit. Eng. 2000, 6, 79–86. [Google Scholar] [CrossRef]
- Phang, T.C.H.; Chen, C.; Tiong, R.L.K. New Model for Identifying Critical Success Factors Influencing BIM Adoption from Precast Concrete Manufacturers’ View. J. Constr. Eng. Manag. 2020, 146, 04020014. [Google Scholar] [CrossRef]
- Mahamid, I. Factors contributing to poor performance in construction projects: Studies of Saudi Arabia. Aust. J. Multi-Discip. Eng. 2016, 12, 27–38. [Google Scholar] [CrossRef]
- Şanal, İ. Significance of Concrete Production in Terms of Carbondioxide Emissions: Social and Environmental Impacts. J. Polytech. 2018, 21, 369–378. [Google Scholar] [CrossRef]
- Senthamilkumar, S.; Devadoss, M. Time and Cost Management in Precast Concrete Constructions. Technol. Innov. 2014, 3. [Google Scholar] [CrossRef]
- Souza, F.S.; Fontanini, P.S.P. Impact on productive stability caused by variations of prestressed precast elements. In Proceedings of the IGLC 28-28th Annual Conference of the International Group for Lean Construction 2020, Berkeley, CA, USA, 6–10 July 2020; pp. 625–636. [Google Scholar] [CrossRef]
- Harijadi, S. Analisis Pemilihan Metode Cast in situ dan Precast Terhadap Biaya Pada Pekerjaan Tempat Duduk Tribun Stadion Utama Jakabaring Palembang. Teknika Polsri 2010, 29, 221565. [Google Scholar]
- Dkh, C. Optimization of Precast Production Planning Using Concepts of Prefabrication Configuration and Component Group; EPPM: Singapore, 2011; pp. 20–21. [Google Scholar]
- Joshi, A.M.; Murari, S.S. Factors Affecting Labour Productivity in Precast Construction Industry. In Proceedings of the Fourth National Conference on Road and Infrastructure, Bangalore, India, 4–5 April 2019; Available online: https://www.researchgate.net/publication/332343823 (accessed on 16 June 2023).
- Ji, Y.; Qi, L.; Liu, Y.; Liu, X.; Li, H.X.; Li, Y. Assessing and prioritising delay factors of prefabricated concrete building projects in China. Appl. Sci. 2018, 8, 2324. [Google Scholar] [CrossRef]
- Wang, D.; Liu, G.; Li, K.; Wang, T.; Shrestha, A.; Martek, I.; Tao, X. Layout optimization model for the production planning of precast concrete building components. Sustainability 2018, 10, 1807. [Google Scholar] [CrossRef]
- Ruan, M.; Xu, F. Improved Eight-Process Model of Precast Component Production Scheduling Considering Resource Constraints. J. Civ. Eng. Manag. 2022, 28, 208–222. [Google Scholar] [CrossRef]
- Podolski, M.; Rejment, M. Scheduling the Production of Precast Concrete Elements Using the Simulated Annealing Metaheuristic Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112083. [Google Scholar] [CrossRef]
- Podolski, M. Effective Allocation of Manpower in the Production of Precast Concrete Elements with the Use of Metaheuristics. J. Civ. Eng. Manag. 2022, 28, 247–260. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Gong, J. Competence Based Worker Assignment and Impacts on Production Scheduling in Precast Construction. In Proceedings of the IEEE Technology and Engineering Management Conference (TEMSCON), Evanston, IL, USA, 28 June–1 July 2018. [Google Scholar]
- Liu, Y.; Tong, W.; Li, Q.; Yao, F.; Li, Y.; Li, H.X.; Huang, J. Study on Complexity of Precast Concrete Components and Its Influence on Production Efficiency. Adv. Civ. Eng. 2022, 2022, 9926547. [Google Scholar] [CrossRef]
- Ko, C.-H. Impact of the Buffer Size on Precast Fabrication. In Proceedings of the 24th Annual Conference of the Int’l. Group for Lean Construction, Boston, MA, USA, 20–22 July 2016; pp. 83–92. [Google Scholar]
- Al-Bazi, K.R.A.F.; Dawood, N.; Dean, J.T. Improving Performance and the Reliability of Off-Site Pre-Cast Concrete Production Operations Using Simulation Optimisation. J. Inf. Technol. Constr. 2010, 15, 336. [Google Scholar]
- Arashpour, M.; Too, E.; Le, T. Improving Productivity, Workflow Management, and Resource Utilization in Precast Construction. In Proceedings of the Resilient Structures and Sustainable Construction Proceedings of the Ninth International Structural Engineering and Construction Conference, Valencia, Spain, 24–29 July 2017. [Google Scholar]
- Santamaria, J.; Valentin, V.; Asce, M.; Candidate, P.D. Optimal Construction Site Conditions for Concrete Operations. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018. [Google Scholar]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.; Mok, M.K. Schedule risks in prefabrication housing production in Hong Kong: A social network analysis. J. Clean. Prod. 2016, 134, 482–494. [Google Scholar] [CrossRef]
- Li, C.Z.; Shen, G.Q.; Xu, X.; Xue, F. Schedule risk modeling in prefabrication housing production. J. Clean. Prod. 2017, 153, 692–706. [Google Scholar] [CrossRef]
- Yuan, M.; Li, Z.; Li, X.; Luo, X. Managing stakeholder-associated risks and their interactions in the life cycle of prefabricated building projects: A social network analysis approach. J. Clean. Prod. 2021, 323, 129102. [Google Scholar] [CrossRef]
- Fan, C.; Binchao, D.; Yin, Y. Hierarchical structure and transfer mechanism to assess the scheduling-related risk in construction of prefabricated buildings: An integrated ISM–MICMAC approach. Eng. Constr. Archit. Manag. 2023, 30, 2991–3013. [Google Scholar] [CrossRef]
- Chen, S.J.; Hwang, C.L. Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Guan, L.; Abbasi, A.; Ryan, M.J. A simulation-based risk interdependency network model for project risk assessment. Decis. Support Syst. 2021, 148, 113602. [Google Scholar] [CrossRef]
- Zio, E. Monte Carlo simulation: The method. In Springer Series in Reliability Engineering; Springer: London, UK, 2013; Volume 68, pp. 19–58. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Eng, C. Improved Precast Production-Scheduling Model Considering the Whole Supply Chain. J. Comput. Civ. Eng. 2017, 31, 04017013. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, C.; Wang, Y. Design for Manufacture and Assembly-oriented parametric design of prefabricated buildings. Autom. Constr. 2018, 88, 13–22. [Google Scholar] [CrossRef]
References | Methods | Field |
---|---|---|
[26] | Relative important index (RII) | Construction projects in the oil and gas sector |
[27] | Artificial neural network | Pile construction risks |
[28] | Agile methodology | Risks management of software projects |
[29] | Partial least square-structure equation model (PLS-SEM) | Pile construction risks |
[30] | RII | Risk assessment of time and cost overrun |
[31] | PLS-SEM+RII | Pipeline project |
Stages | Symbol | Factors | Reference |
---|---|---|---|
General | R1 | Demand for megaprojects | [5,38] |
R2,1 | Social and cultural impacts | [39,40,41] | |
R3,1 | Project budget | [5,38,39,40,42,43,44,45] and experts | |
R4,1 | Inflation | Experts | |
Predesign/initiating | R5,2 | Planning and scheduling | [39,40,46,47] and experts |
Design | R3,3 | Project budget | [5,38,39,40,42,43,44,45] and experts |
R5,3 | Planning and scheduling | [39,40,46,47,48,49,50,51,52] and Experts | |
R6,3 | Approval period | Experts | |
R7,3 | Coordination and integration among the professions | [38,40,47,50] | |
Production | R2,4 | Social and cultural impacts | [39,40] |
R3,4 | Project budget | [5,38,39,40,42,43,44,45] and experts | |
R4,4 | Inflation | Experts | |
R8,4 | Production capacity | [39,47,53,54] | |
R9,4 | Usage of workforce | [46,47,52,55,56] | |
R10,4 | Dependent on other materials | Experts | |
R11,4 | Site conditions | [57] and experts | |
R12,4 | Transportation duration and regulation requirements | Experts | |
Transportation Construction/closing | R2,5 | Social and cultural impacts | [39,40] |
R3,5 | Project budget | [5,38,39,40,42,43,44,45] and experts | |
R4,5 | Inflation | Experts | |
R5,5 | Planning and scheduling | [39,40,46,47,48,49,50,51,52] and experts | |
R13,5 | Erection productivity | [5,40] | |
R14,5 | Construction equipment | [40,46] | |
R15,5 | Site management and supervision | [39,40,47] |
Expert # | Role | Sector | Qualifications | Years of Experience |
---|---|---|---|---|
1 | Vice president (VP) | Precast company | Ph.D., civil engineering | 25 |
2 | Sales/contract manager | Precast company | Bachelor’s degree, civil engineering/MBA | 18 |
3 | Structural engineer | Contractor | Bachelor’s degree, civil engineering | 18 |
4 | Project manager | Consultant | Bachelor’s degree, civil engineering/PE | 15 |
5 | Co-owner of a precast factory | Investor | Master, civil engineering | 20 |
6 | QA/QC manager | Precast company | Master, industrial engineering | 15 |
7 | Design manager | Precast company | Bachelor’s degree, civil engineering/PE | 30 |
8 | Project manager | Real estate company | Bachelor’s degree, civil engineering | 18 |
9 | Production manager | Precast company | Bachelor’s degree, civil engineering | 20 |
10 | Project manager | Consultant | Bachelor’s degree, civil engineering | 20 |
Factor | R1 | R2,1 | R4,1 | R5,2 | R6,3 | |||||
Impacted by | R2,1 | R3,1 | R4,1 | R1 | R3,1 | R1 | R1 | R4,1 | R5,3 | R7,3 |
Factor | R5,3 | R7,3 | R3,3 | |||||||
Impacted by | R5,2 | R6,3 | R7,3 | R3,3 | R6,3 | R5,3 | R6,3 | R5,3 | ||
Factor | R5,4 | R2,4 | ||||||||
Impacted by | R6,3 | R5,3 | R3,3 | R8,4 | R9,4 | R3,4 | R4,4 | R8,4 | R9,4 | |
Factor | R10.4 | R3.4 | R12,4 to: | |||||||
Impacted by | R5,4 | R8.4 | R4,4 | R5,4 | R8,4 | R1 | R7,3 | R2,4 | R11,4 | |
Factor | R4,4 | R11,4 | ||||||||
Impacted by | R5,4 | R8,4 | R10,4 | R3,4 | R12,4 | R1 | R12,4 | |||
Factor | R5,5 | |||||||||
Impacted by | R8,4 | R3,4 | R11,4 | R12,4 | R2,5 | R4,5 | R3,5 | R13,5 | R14,5 | |
Factor | R2,5 | R4,5 | ||||||||
Impacted by | R12,4 | R5,5 | R3,5 | R13,5 | R14,5 | R15,5 | R5,5 | |||
Factor | R3,5 | R13,5 | ||||||||
Impacted by | R11,4 | R5,5 | R2,5 | R4,5 | R13,5 | R14,5 | R8,4 | R10,4 | R11,4 | |
Factor | R13,5 | R14,5 | ||||||||
Impacted by | R12,4 | R5,5 | R2,5 | R4,5 | R3,5 | R14,5 | R15,5 | R11,4 | R12,4 | |
Factor | R14,5 | R15,5 | ||||||||
Impacted by | R5,5 | R4,5 | R3,5 | R13,5 | R15,5 | R5,5 | R2,5 | R13,5 | R14,5 |
R1 | R2,1 | R3,1 | R4,1 | R5,2 | R6,3 | R5,3 | R7,3 | R3,3 | R5,4 | R8,4 | R9,4 | R10,4 | R2,4 | R3,4 | R4,4 | R11,4 | R12,4 | R5,5 | R2,5 | R4,5 | R3,5 | R13,5 | R14,5 | R15,5 | |
R1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R2,1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R3,1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R4,1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R5,2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R6,3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R5,3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R7,3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R3,3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
R5,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R8,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
R9,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R10,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
R2,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R3,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
R4,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R11,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | |
R12,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | |
R5,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | |
R2,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | |
R4,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | |
R3,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
R13,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
R14,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | |
R15,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
R1 | R2,1 | R3,1 | R4,1 | … | R15,5 | |
R1 | 2 | 2 | 0 | 5 | … | 0 |
R2,1 | 2 | 1 | 0 | 1 | … | 0 |
R3,1 | 0 | 0 | 5 | 0 | … | 0 |
R4,1 | 4 | 0 | 4 | 3 | … | 0 |
. . . | . . . | . . . | . . . | . . . | . . . | . . . |
R15,5 | 0 | 0 | 0 | 0 | 0 | 2 |
Linguistic Variables | Likert Scale | Trapezoidal Fuzzy Members y1, y2, y3, y4 | p |
---|---|---|---|
Very low | 1 | 0, 0, 0, 0.2 | 0.0167 |
Low | 2 | 0, 0.2, 0.2, 0.4 | 0.1 |
Medium | 3 | 0.3, 0.5, 0.5, 0.7 | 0.25 |
High | 4 | 0.6, 0.0.8, 0.8, 1 | 0.4 |
Very high | 5 | 0.8, 1, 1, 1 | 0.485 |
R1 | R2,1 | R3,1 | R4,1 | … | R15,5 | |
R1 | 0.1 | 0.1 | 0 | 0.485 | … | 0 |
R2,1 | 0.1 | 0.0167 | 0 | 0.0167 | … | 0 |
R3,1 | 0 | 0 | 0.485 | 0 | … | 0 |
R4,1 | 0.4 | 0 | 0.4 | 0.4 | … | 0 |
. . . | . . . | . . . | . . . | . . . | . . . | . . . |
R15,5 | 0 | 0 | 0 | 0 | … | 0.10 |
R1 | R2,1 | R3,1 | R4,1 | R5,2 | R6,3 | R5,3 | R7,3 | R3,3 | R5,4 | R8,4 | R9,4 | R10,4 | R2,4 | R3,4 | R4,4 | R11,4 | R12,4 | R5,5 | R2,5 | R4,5 | R3,5 | R13,5 | R14,5 | R15,5 | |
R1 | 0.11 | 0.26 | 0.38 | 0.24 | 0.08 | 0.11 | |||||||||||||||||||
R2,1 | 0.25 | ||||||||||||||||||||||||
R3,1 | 0.08 | 0.32 | 0.13 | ||||||||||||||||||||||
R4,1 | 0.36 | 0.21 | |||||||||||||||||||||||
R5,2 | 0.40 | 0.38 | |||||||||||||||||||||||
R6,3 | 0.22 | 0.33 | 0.24 | 0.35 | 0.43 | ||||||||||||||||||||
R5,3 | 0.44 | 0.38 | 0.33 | 0.18 | 0.05 | ||||||||||||||||||||
R7,3 | 0.33 | 0.35 | |||||||||||||||||||||||
R3,3 | 0.39 | 0.29 | |||||||||||||||||||||||
R5,4 | 0.38 | 0.30 | 0.33 | ||||||||||||||||||||||
R8,4 | 0.47 | 0.41 | 0.43 | ||||||||||||||||||||||
R9,4 | 0.31 | 0.31 | 0.16 | ||||||||||||||||||||||
R10,4 | 0.46 | 0.30 | 0.37 | 0.00 | 0.32 | ||||||||||||||||||||
R2,4 | 0.21 | 0.04 | |||||||||||||||||||||||
R3,4 | 0.39 | 0.45 | 0.04 | 0.26 | |||||||||||||||||||||
R4,4 | 0.12 | 0.21 | 0.14 | 0.04 | |||||||||||||||||||||
R11,4 | 0.35 | 0.36 | 0.14 | 0.45 | 0.41 | 0.00 | |||||||||||||||||||
R12,4 | 0.33 | 0.27 | 0.26 | 0.32 | 0.18 | 0.00 | 0.35 | 0.35 | |||||||||||||||||
R5,5 | 0.36 | 0.00 | 0.14 | 0.37 | 0.40 | 0.32 | 0.18 | ||||||||||||||||||
R2,5 | 0.12 | 0.04 | 0.00 | 0.24 | 0.36 | 0.31 | |||||||||||||||||||
R4,5 | 0.04 | 0.20 | 0.11 | 0.15 | |||||||||||||||||||||
R3,5 | 0.14 | ||||||||||||||||||||||||
R13,5 | 0.47 | 0.47 | |||||||||||||||||||||||
R14,5 | 0.26 | 0.43 | 0.45 | 0.35 | 0.32 | ||||||||||||||||||||
R15,5 | 0.00 | 0.28 | 0.13 |
R12,4 | TRUE | FALSE | ||
R3,4 | TRUE | FALSE | TRUE | FALSE |
TRUE | 0.308 | 0.3017 | 0.1461 | 0.0370 |
FALSE | 0.6194 | 0.6983 | 0.8539 | 0.9630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Gahtani, K.S.; Aldokhi, M.I.; Alsanabani, N.M.; Alotaibi, H.F.; Bin Mahmoud, A.A. The Impact of Dynamic Risk Interdependencies on the Saudi Precast Concrete Industry. Buildings 2024, 14, 875. https://doi.org/10.3390/buildings14040875
Al-Gahtani KS, Aldokhi MI, Alsanabani NM, Alotaibi HF, Bin Mahmoud AA. The Impact of Dynamic Risk Interdependencies on the Saudi Precast Concrete Industry. Buildings. 2024; 14(4):875. https://doi.org/10.3390/buildings14040875
Chicago/Turabian StyleAl-Gahtani, Khalid S., Mohammed I. Aldokhi, Naif M. Alsanabani, Hatim F. Alotaibi, and Abdulrahman A. Bin Mahmoud. 2024. "The Impact of Dynamic Risk Interdependencies on the Saudi Precast Concrete Industry" Buildings 14, no. 4: 875. https://doi.org/10.3390/buildings14040875