Next Article in Journal
Steel Weld Metal Deposit Measured Properties after Immediate Micro-Jet Cooling
Previous Article in Journal
A Modified Johnson-Cook Model for Hot Deformation Behavior of 35CrMo Steel
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Metals 2017, 7(9), 338; doi:10.3390/met7090338

Corrosion Behavior of Keyhole-Free Friction Stir Spot Welded Joints of Dissimilar 6082 Aluminum Alloy and DP600 Galvanized Steel in 3.5% NaCl Solution

1
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
*
Author to whom correspondence should be addressed.
Received: 23 July 2017 / Revised: 23 August 2017 / Accepted: 27 August 2017 / Published: 1 September 2017
View Full-Text   |   Download PDF [9946 KB, uploaded 1 September 2017]   |  

Abstract

The corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminum alloy and DP600 galvanized steel in 3.5% NaCl solution has been investigated by the immersion test and electrochemical analysis. The surface of the aluminum alloy produced exfoliation and pitting corrosion. The pitting occurred seriously on the interface of the 6082 aluminum alloy, but the steel had no corrosion. The corrosion galvanic couples were formed between elements of Si and Fe with a high electrode potential, and Mg and Al with a low electrode potential, around them. Mg and Al elements of Mg2Si and Si-containing solid-solution phase α (Al) preferentially became an anodic dissolution and formed exfoliation corrosion around the Si elements. Fe-rich phase θ (Al3Fe) as the cathode caused corrosion of Mg and formed pitting around Mg-rich phase β (Al3Mg2) as the anode. The sequence of the corrosion resistance of different areas of the joints (with decreasing corrosion resistance) was WNZ (Weld Nugget Zone) > TMAZ (Thermo-mechanically Affected Zone) > BM (Base Metal) > HAZ (Heat-affected Zone). The joints of keyhole-free FSSW (Fiction Stir Spot Welding) of dissimilar 6082 aluminum alloy and DP600 galvanized steel have better corrosion resistance than base metal in 3.5% NaCl solution. View Full-Text
Keywords: dissimilar aluminum/steel; keyhole-free FSSW; pitting; exfoliation corrosion; intermetallic compounds dissimilar aluminum/steel; keyhole-free FSSW; pitting; exfoliation corrosion; intermetallic compounds
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, Z.-K.; Yu, Y.; Zhang, J.-F.; Wang, X.-J. Corrosion Behavior of Keyhole-Free Friction Stir Spot Welded Joints of Dissimilar 6082 Aluminum Alloy and DP600 Galvanized Steel in 3.5% NaCl Solution. Metals 2017, 7, 338.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top