Next Article in Journal
Variable-Frequency Ultrasonic Treatment on Microstructure and Mechanical Properties of ZK60 Alloy during Large Diameter Semi-Continuous Casting
Previous Article in Journal
Microstructure and Properties of the Interface Area in the Laser Cladded Ni Based Coatings on the 1Cr10Mo1NiWVNbN Steel
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Metals 2017, 7(5), 174; doi:10.3390/met7050174

Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing

1
College of Geosciences and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2
Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China
*
Author to whom correspondence should be addressed.
Academic Editor: Houshang Alamdari
Received: 15 February 2017 / Revised: 7 May 2017 / Accepted: 11 May 2017 / Published: 15 May 2017
View Full-Text   |   Download PDF [887 KB, uploaded 15 May 2017]   |  

Abstract

The tuff, a part of coal-bearing strata, in the Zhongliangshan coal mine, Chongqing, southwestern China, hosts a rare metal deposit enriched in rare earth elements (REE), Ga and Nb. However, the extraction techniques directly related to the recovery of rare metals in coal-bearing strata have been little-studied in the literature. The purpose of this paper is to investigate the extractability of REE, Ga and Nb in the tuff in the Zhongliangshan mine using the alkaline sintering-water immersion-acid leaching (ASWIAL) method. The results show that ASWIAL can separate and extract REE, Ga and Nb effectively under the optimized conditions of calcining at 860 °C for 0.5 h with a sample to sintering agent ratio of 1:1.5, immersing at 90 °C for 2 h with 150 mL hot water dosage, and leaching using 4 mol/L HCl at 40 °C for 2 h with a liquid-solid ratio of 20:1 (mL:g). The final leaching efficiencies of REE and Ga are up to 85.81% and 93.37%, respectively, whereas the leaching efficiency of Nb is less than 1%, suggesting the high concentration of Nb in the leaching residue, which needs further extraction. View Full-Text
Keywords: extractability; alkaline sintering-water immersion-acid leaching; tuff; Chongqing extractability; alkaline sintering-water immersion-acid leaching; tuff; Chongqing
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zou, J.; Tian, H.; Wang, Z. Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing. Metals 2017, 7, 174.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top