Fe(III) Precipitation and Copper Loss from Sulphate-Chloride Solutions at 150 °C: A Statistical Approach
Abstract
:1. Introduction
2. Experimental
3. Initial Screening
4. Fractional Factorial Design
Box–Behnken Design
5. Results and Discussion
5.1. Fractional Factorial Design
5.2. Optimization for the Factors
0.162 × [H2SO4] × [Seed] − 0.082 × [Seed]2
× [H2SO4] + 0.002 × [Fe]2 + 0.003 × [Seed]2
5.3. Mechanism of Cu Loss to the Precipitates
6. Optimum Parameters
7. Phase Analysis of the Precipitates
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Box–Behnken Design
Appendix C. Transformation Applied to %Fe(III) Precipitated in Figure 1
References
- Beaulieu, R.; Gagne, G.; Nasmyth, M.; Cooper, G.; Inostroza, C. Iron Control and Management in the Zinc Industry. In Iron Control Technologies: Proceedings of the Third International Symposium on Iron Control in Hydrometallurgy, Montreal, QC, Canada, 1–4 October 2006; Dutrizac, J.E., Riveros, P.A., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2006; pp. 45–55. [Google Scholar]
- Hackl, R.P.; Dreisinger, D.B.; Peters, E.; King, J. Passivation of chalcopyrite during oxidative leaching in sulfate media. HydrometaIlurgy 1995, 39, 25–48. [Google Scholar] [CrossRef]
- Tainton, U.C.; Lyeson, L.T. Electrolytic zinc from complex ores. Trans. Am. Inst. Min. Metall. Pet. Eng. 1924, 70, 486–522. [Google Scholar]
- Dutrizac, J.E. An overview of iron precipitation in hydrometallurgy. In Crystallization and Precipitation; Strathdee, G.L., Klein, M.O., Melis, L.A., Eds.; Pergamon Press: Saskatoon, SK, Canada, 1987; pp. 259–283. [Google Scholar]
- Schwertmann, U.; Friedl, J.; Stanjek, H. From Fe (III) ions to ferrihydrite and then to hematite. J. Colloid Interface Sci. 1999, 209, 215–223. [Google Scholar] [CrossRef]
- Cornell, R.M.; Giovanoli, R.; Schneider, W. Review of hydrolysis of iron (III) and the crystallisation of amorphous iron (III) hydroxide hydrate. J. Chem. Technol. Biotechnol. 1989, 46, 115–134. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J.; Essilfie-Dughan, J. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environ. Sci. Technol. 2011, 45, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Žic, M.; Ristić, M.; Musić, S. Monitoring the hydrothermal precipitation of α-Fe2O3 from concentrated Fe(NO3)3 solutions partially neutralized with NaOH. J. Mol. Struct. 2011, 993, 115–119. [Google Scholar] [CrossRef]
- Claassen, J.O.; Meyer, E.H.O.; Rennie, J.; Sandenbergh, R.F. Iron precipitation from zinc-rich solutions: Defining the Zincor Process. Hydrometallurgy 2002, 67, 87–108. [Google Scholar] [CrossRef]
- Loan, M.; Newman, O.G.M.; Cooper, R.M.G.; Farrow, J.B.; Parkinson, G.M. Defining the paragoethite process for iron removal in zinc. Hydrometallurgy 2006, 81, 104–129. [Google Scholar] [CrossRef]
- Javed, T.; Abdul, B.; Ryan, D.; Raudsepp, M.; Asselin, E. Amorphous iron phases in medium temperature leach residues and associated metal loss. Int. J. Miner. Process. 2016, 148, 65–71. [Google Scholar] [CrossRef]
- Dyer, L.; Su, B.; Asselin, E. Cobalt loss due to iron precipitation in ammoniacal carbonate solutions. Hydrometallurgy 2012, 125–126, 144–147. [Google Scholar] [CrossRef]
- Sahu, S.K.; Asselin, E. Characterization of residue generated during medium temperature leaching of chalcopyrite concentrate under CESL conditions. Hydrometallurgy 2011, 110, 107–114. [Google Scholar] [CrossRef]
- Steel, A.; Hawboldt, K.; Khan, F. Assessment of minerals and iron-bearing phases present in hydrometallurgical residues from a nickel sulfide concentrate and availability of residue associated metals. Hydrometallurgy 2010, 101, 126–134. [Google Scholar] [CrossRef]
- Loan, M.; Parkinson, G.M.; Newman, M.; Farrow, J.B. Iron oxy-hydroxide crystallization in a hydrometallurgical residue. J. Cryst. Growth 2002, 235, 482–488. [Google Scholar] [CrossRef]
- Loan, M.; Richmond, W.R.; Parkinson, G.M. On the crystal growth of nanoscale schwertmannite. J. Cryst. Growth 2005, 275, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Bigham, J.M.; Carlson, L.; Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from Pyhlsalmi, Finland, and other localities. Miner. Mag. 1994, 58, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Claassen, J.O.; Sandenbergh, R.F. Influence of temperature and pH on the quality of metastable iron phases produced in zinc-rich solutions. Hydrometallurgy 2007, 86, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Loan, M.; Pierre, T.G.S.; Parkinson, M.; Newman, O.; Farrow, J. Identifying Nanoscale Ferrihydrite in Hydrometallurgical Residues. JOM 2002, 54, 40–43. [Google Scholar] [CrossRef]
- Riveros, P.A.; Dutrizac, J.E. The precipitation of hematite from ferric chloride media. Hydrometallurgy 1997, 46, 85–104. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Riveros, P.A. The Precipitation of Hematite from Ferric Chloride Media at Atmospheric Pressure. Metall. Mater. Trans. B 1999, 30, 993–1001. [Google Scholar] [CrossRef]
- Umetsu, Y.; Tozawa, K.; Sasaki, K. The hydrolysis of ferric sulphate solutions at elevated temperatures. Can. Metall. Q. 1977, 16, 111–117. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Zapata, J.; Padilla, R. Effect of Variables on the Quality of Hematite Precipitated from Sulfate Solutions. Hydrometallurgy 2007, 89, 32–39. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Chen, T.T. Factors Affecting the Precipitation of Hematite Rather than Jarosite in Nickel Sulphate-Chloride Solutions. In Proceedings of Hydrometallurgy of Nickel and Cobalt; Budac, J.J., Ed.; The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2009; pp. 295–319. [Google Scholar]
- Dutrizac, J.E.; Chen, T.T. Precipitation of Hematite Directly from Ferric Sulphate Solutions. World Metall. 2011, 64, 134–150. [Google Scholar]
- Javed, T.; Xie, M.; Asselin, E. Factors affecting hematite precipitation and characterization of the product from simulated sulphate-chloride solutions at 150 °C. J. Hydrometall. 2018, 179, 8–19. [Google Scholar] [CrossRef]
- Barr, G.; Defreyne, J.; Mayhew, K. CESL Process—An Economic Alternative to Smelting; CESL Ltd: Peterborough, UK, 2005. [Google Scholar]
- Oehlert, G.W. A First Course in Design and Analysis of Experiments; W.H. Freeman: New York, NY, USA, 2000. [Google Scholar]
- Wang, K.; Li, J.; McDonald, R.G.; Browner, R.E. The effect of iron precipitation upon nickel losses from synthetic atmospheric nickel laterite leach solutions: Statistical analysis and modelling. Hydrometallurgy 2011, 109, 140–152. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experiments: An Introduction to Design, Data Analysis, and Model Building; John Wiley and Sons, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surfacemethodology: Process and Product Optimization Using Designed Experiments; John Wiley and Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Burkin, A.R. Use of Statistical Methods of Experimental Design in Optimizing Hydrometallurgical Processes. Hydrometall. Process Fundam. 1984, 10, 529–538. [Google Scholar]
- Agatzini, S.; Burkin, A.R. Statistical approach to the precipitation of iron as ‘goethite’. Trans. Inst. Min. Metall. Sect. 1985, 94, C105–C114. [Google Scholar]
- De La Torre, A.G.; Bruque, S.; Aranda, M.A.G. Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 2001, 34, 196–202. [Google Scholar] [CrossRef]
- Rolia, E.; Dutrizac, J.E. The Determination of Free Acid in Zinc Processing Solutions. Can. Metall. Q. 1984, 23, 159–167. [Google Scholar] [CrossRef]
- Jones, D.L.; Mayhew, K.; Connor, L.O. Nickel and cobalt recovery from a bulk copper-nickel concentrate using the CESL process. In Hydrometallurgy of Nickel and Cobalt; Budac, J.J., Fraser, R., Mihaylov, I., Eds.; CIM: Montreal, QC, Canada, 2009; pp. 45–58. [Google Scholar]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Daniel, C. Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1959, 1, 311–341. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–246. [Google Scholar] [CrossRef]
- Demopoulos, G.P. Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 2009, 96, 199–214. [Google Scholar] [CrossRef]
- Daniel, C. Applications of Statistics to Industrial Experimentations; John Wiley and Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Dirksen, J.A.; Ring, T.A. Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology. Chem. Eng. Sci. 1991, 46, 2389–2427. [Google Scholar] [CrossRef]
- Claassen, J.O.; Sandenbergh, R.F. Particle growth parameters in the precipitation of metastable iron phases from zinc-rich solutions. Hydrometallurgy 2006, 84, 165–174. [Google Scholar] [CrossRef]
- Rose, A.W.; Bianchi-Mosquera, G.C. Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite: A control on metal mobilization from red beds into stratiform copper deposits. Econ. Geol. 1993, 88, 1226–1236. [Google Scholar] [CrossRef]
- Peacock, C.L.; Sherman, D.M. Copper(II) sorption onto goethite, hematite and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 2623–2637. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, F.A. Kinetic Study on Removal of Copper (II) Using Goethite and Hematite Nano-Photocatalysts. J. Colloid Interface Sci. 2010, 347, 277–281. [Google Scholar] [CrossRef]
- Grover, V.A.; Hu, J.; Engates, K.E.; Shipley, H.J. Adsorption and desorption of bivalent metals to hematite nanoparticles. Environ. Toxicol. Chem. 2012, 31, 86–92. [Google Scholar] [CrossRef]
- Madden, A.S.; Hochella, M.F.; Luxton, T.P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim. Cosmochim. Acta 2006, 70, 4095–4104. [Google Scholar] [CrossRef]
- Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004, 35, 257–267. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertman, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Biagioni, C.; Bonaccorsi, E.; Orlandi, P. Volaschioite, Fe4(SO4)O2(OH)6·2H2O, a new mineral species from Fornovolasco, Apuan Alps Tuscany, Italy. Can. Mineral. 2011, 49, 605–614. [Google Scholar] [CrossRef]
Factor | Variable | Low Level (−) | High Level (+) | Units |
---|---|---|---|---|
A | Initial Fe(III) | 6 | 15 | g/L |
B | Initial H2SO4 | 0 | 15 | g/L |
C | Retention time | 1 | 6 | h |
D | Initial chloride | 0 | 30 | g/L |
E | Hematite seed | 0 | 15 | g/L |
Experiment No. | Variables Studied | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | ||||||
Coded | Actual | Coded | Actual | Coded | Actual | Coded | Actual | Coded | Actual | |
F-1 | + | 15 | — | 0 | — | 1 | — | 0 | + | 15 |
F-2 | + | 15 | — | 0 | + | 6 | — | 0 | — | 0 |
F-3 | + | 15 | + | 15 | — | 1 | + | 30 | — | 0 |
F-4 | + | 15 | + | 15 | + | 6 | + | 30 | + | 15 |
F-5 | — | 6 | + | 15 | — | 1 | — | 0 | — | 0 |
F-6 | — | 6 | — | 0 | + | 6 | + | 30 | — | 0 |
F-7 | — | 6 | — | 0 | — | 1 | + | 30 | + | 15 |
F-8 | — | 6 | + | 15 | + | 6 | — | 0 | + | 15 |
Factor | Variable | Low Level (−) | Medium (0) | High Level (+) | Units |
---|---|---|---|---|---|
A | Initial Fe(III) | 6 | 10.5 | 15 | g/L |
B | Initial H2SO4 | 0 | 7.5 | 15 | g/L |
E | Seed | 0 | 7.5 | 15 | g/L |
Experiment No. | Variables Studied | |||||
---|---|---|---|---|---|---|
A | B | C | ||||
Coded | Actual | Coded | Actual | Coded | Actual | |
G-1 | — | 6 | + | 15 | 0 | 7.5 |
G-2 | + | 15 | 0 | 7.5 | 0 | 7.5 |
G-3 | — | 6 | 0 | 7.5 | 0 | 7.5 |
G-4 | + | 15 | + | 15 | 0 | 7.5 |
G-5 | + | 15 | — | 0 | — | 0 |
G-6 | 0 | 10.5 | + | 15 | — | 0 |
G-7 | 0 | 10.5 | 0 | 7.5 | — | 0 |
G-8 | — | 6 | — | 0 | — | 0 |
G-9 | — | 6 | — | 0 | + | 15 |
G-10 | 0 | 10.5 | 0 | 7.5 | + | 15 |
G-11 | 0 | 10.5 | + | 15 | + | 15 |
G-12 | + | 15 | — | 0 | + | 15 |
G-13 | 0 | 10.5 | 0 | 7.5 | 0 | 7.5 |
G-14 | 0 | 10.5 | 0 | 7.5 | 0 | 7.5 |
G-15 | 0 | 10.5 | 0 | 7.5 | 0 | 7.5 |
Experiment No. | Precipitates Fe, S Content (%) | %Fe(III) Precipitated | Cu in Solids (%) | |
---|---|---|---|---|
Fe | S | |||
F-1 | 62.3 | 1.33 | 57.0 | 0.16 |
F-2 | 59.7 | 2.57 | 73.4 | 0.19 |
F-3 | 47.8 | 5.72 | 10.2 | 0.09 |
F-4 | 64.0 | 1.09 | 48.3 | 0.08 |
F-5 | 56.2 | 2.47 | 14.9 | 0.04 |
F-6 | 61.6 | 1.58 | 86.6 | 0.05 |
F-7 | 64.5 | 0.91 | 94.6 | 0.04 |
F-8 | 66.2 | 0.62 | 79.9 | 0.07 |
Experiment No | Precipitates Fe, S Content (%) | %Fe(III) Precipitated | Cu in Solids (%) | |
---|---|---|---|---|
Fe | S | |||
G-1 | 64.6 | 0.89 | 60.7 | 0.03 |
G-2 | 63.4 | 1.36 | 34.2 | 0.13 |
G-3 | 58.5 | 1.18 | 72.5 | 0.25 |
G-4 | 61.2 | 1.23 | 22.8 | 0.05 |
G-5 | 48.0 | 4.04 | 44.2 | 0.49 |
G-6 | 53.4 | 2.87 | 10.0 | 0.29 |
G-7 | 51.8 | 2.91 | 39.2 | 0.52 |
G-8 | 54.8 | 1.98 | 75.8 | 0.86 |
G-9 | 60.4 | 0.86 | 86.6 | 0.53 |
G-10 | 62.6 | 1.00 | 65.6 | 0.15 |
G-11 | 63.3 | 0.95 | 56.0 | 0.07 |
G-12 | 59.5 | 1.20 | 52.0 | 0.16 |
G-13 | 60.5 | 1.37 | 54.0 | 0.12 |
G-14 | 60.9 | 1.39 | 53.0 | 0.15 |
G-15 | 60.7 | 1.38 | 55.0 | 0.14 |
Source. | %Fe(III) Precipitated | % Cu Content | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df 1 | Mean Square | F Value | p-Value Prob > F | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
Model | 5578.98 | 5 | 1115.80 | 199.90 | <0.0001 | 0.77 | 6 | 0.13 | 126.66 | <0.0001 |
A-Fe | 2531.87 | 1 | 2531.87 | 453.59 | <0.0001 | 0.047 | 1 | 0.047 | 45.74 | 0.0001 |
B-H2SO4 | 1512.89 | 1 | 1512.89 | 271.04 | <0.0001 | 0.12 | 1 | 0.12 | 117.56 | <0.0001 |
C-Seed | 1366.95 | 1 | 1366.95 | 244.89 | <0.0001 | 0.20 | 1 | 0.20 | 194.17 | <0.0001 |
AB | - | - | - | - | - | 0.054 | 1 | 0.054 | 53.48 | <0.0001 |
BC | 458.45 | 1 | 458.45 | 82.13 | <0.0001 | - | - | - | - | - |
A2 | - | - | - | - | - | 0.006 | 1 | 0.006 | 6.07 | 0.0391 |
C2 | 67.93 | 1 | 67.93 | 12.17 | 0.0068 | 0.11 | 1 | 0.11 | 103.52 | <0.0001 |
Residual | 50.24 | 9 | 5.58 | - | - | 0.008 | 8 | 1.017 × 10−3 | - | - |
Lack of Fit | 48.24 | 7 | 6.89 | 6.89 | 0.1325 | 0.008 | 6 | 1.279 × 10−3 | 5.50 | 0.1617 |
Pure Error | 2.00 | 2 | 1.00 | - | - | 4.647 × 10−4 | 2 | 2.323 × 10−4 | - | - |
Corrected- Total | 5629.22 | 14 | - | - | - | 0.78 | 14 | - | - | - |
Experiment No. | Fe(III) (g/L) | Cu(II) (g/L) | Free Acid (g/L) 2 | Mineral Phase Precipitated 1 | |||
---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | ||
F-1 | 15 | 6.2 | 30 | 29.3 | 0 | 22.7 | H |
F-2 | 15 | 4.0 | 30 | 28.8 | 0 | 29.2 | H |
F-3 | 15 | 13.1 | 30 | 29.8 | 15 | 19.1 | H + V |
F-4 | 15 | 7.3 | 30 | 29.5 | 15 | 34.5 | H |
F-5 | 6 | 5.0 | 30 | 29.8 | 15 | 17.6 | H |
F-6 | 6 | 0.58 | 30 | 29.9 | 0 | 14.6 | H |
F-7 | 6 | 0.29 | 30 | 29.7 | 0 | 15.2 | H |
F-8 | 6 | 1.0 | 30 | 29.7 | 15 | 27.9 | H |
G-1 | 6 | 2.3 | 30 | 29.8 | 15 | 24 | H |
G-2 | 15 | 9.6 | 30 | 29.5 | 7.5 | 21.3 | H |
G-3 | 6 | 1.6 | 30 | 29.5 | 7.5 | 20.3 | H |
G-4 | 15 | 11.5 | 30 | 28.9 | 15 | 24.2 | H |
G-5 | 15 | 7.9 | 30 | 27.5 | 0 | 18.2 | H + V |
G-6 | 10.5 | 9.4 | 30 | 29.6 | 15 | 18 | H |
G-7 | 10.5 | 6.3 | 30 | 28.8 | 7.5 | 19.6 | H |
G-8 | 6 | 1.3 | 30 | 27.8 | 0 | 12.5 | H + G |
G-9 | 6 | 0.6 | 30 | 28.4 | 0 | 14.2 | H |
G-10 | 10.5 | 3.5 | 30 | 29.3 | 7.5 | 26.1 | H |
G-11 | 10.5 | 5.0 | 30 | 29.7 | 15 | 28.4 | H |
G-12 | 15 | 5.5 | 30 | 29.3 | 0 | 23.2 | H |
G-13 | 10.5 | 4.8 | 30 | 29.5 | 7.5 | 22.5 | H |
G-14 | 10.5 | 4.6 | 30 | 29.4 | 7.5 | 22.8 | H |
G-15 | 10.5 | 4.7 | 30 | 29.7 | 7.5 | 22.3 | H |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, T.; Asselin, E. Fe(III) Precipitation and Copper Loss from Sulphate-Chloride Solutions at 150 °C: A Statistical Approach. Metals 2020, 10, 669. https://doi.org/10.3390/met10050669
Javed T, Asselin E. Fe(III) Precipitation and Copper Loss from Sulphate-Chloride Solutions at 150 °C: A Statistical Approach. Metals. 2020; 10(5):669. https://doi.org/10.3390/met10050669
Chicago/Turabian StyleJaved, Tasawar, and Edouard Asselin. 2020. "Fe(III) Precipitation and Copper Loss from Sulphate-Chloride Solutions at 150 °C: A Statistical Approach" Metals 10, no. 5: 669. https://doi.org/10.3390/met10050669