Effect of a 90-Minute Nap at Different Times of the Day on Physical Performance, Psycho-Cognitive Responses, and Perceived Recovery in Trained Youth Male Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Collection and Analysis
2.3.1. 5 m Shuttle Run Test
- Total distance (TD) (m) = sum of distances covered during the 6 × 30 s shuttles;
- Best distance (BD) (m) = highest distance covered during one of the 6 × 30 s shuttles;
- Fatigue index (FI) (%):
- Percentage decrement (PD) (%):
2.3.2. Stanford Sleepiness Scale
2.3.3. Feelings Scale
2.3.4. The Hooper Questionnaire
2.3.5. The Digit Cancelation Test
2.3.6. Rating of Perceived Exertion
2.3.7. The Delayed Onset Muscle Soreness Scale
2.3.8. Perceived Recovery Status Scale
2.4. Statistical Analyses
3. Results
3.1. Physical Performance
3.1.1. Total Distance
3.1.2. Best Distance
3.1.3. Fatigue Index
3.1.4. Percentage Decrement
3.2. Rating of Perceived Exertion
3.3. Sleep Quality
3.4. Psycho-Cognitive Parameters
3.4.1. The DCT
3.4.2. Feeling Scale
| Nap-13h | No-Nap-13h | Nap-15h | No-Nap-15h | |
|---|---|---|---|---|
| DCT (a.u.) | 72.57/6.77 *,&,$ | 54.57/9.35 | 62.71/7.10 & | 59.07/8.69 |
| FS (a.u.) | 1.00 (3) | 0.50 (2.25) | 1.00 (2.25) | 1.00 (2.25) |
3.4.3. The Hooper Questionnaire
3.5. Perceived Recovery
3.5.1. Delayed Onset of Muscle Soreness
3.5.2. Perceived Recovery Status
| Nap-13h | No-Nap-13h | Nap-15h | No-Nap-15h | |||||
|---|---|---|---|---|---|---|---|---|
| 5 min | 24 h | 5 min | 24 h | 5 min | 24 h | 5 min | 24 h | |
| DOMS (a.u.) | 1.5 (3.25) | 1 (2.25) | 2 (2) | 3 (3) | 2.5 (1.25) | 3 (2.25) | 2.5 (3) | 3 (2.25) |
| PRS (a.u.) | 7.50(3.25) | 9.00 (1) *,α | 9.00 (2.00) £ | 9.00 (1.00) &,€ | 8.50 (2.00) | 9.00 (1.00) ¥ | 10.00 (2) # | 9.00 (1.00) β |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DOMS | Delayed onset muscle recovery |
| FI | Fatigue index |
| PD | Percentage decrement |
| 5mSRT | 5 m shuttle run test |
| RPE | Rating of perceived exertion |
| PRS | Perceived recovery status |
| DCT | Digit cancelation test |
| FS | Feeling scale |
| SSS | Stanford Sleepiness Scale |
References
- Lovato, N.; Lack, L. The effects of napping on cognitive functioning. In Progress in Brain Research; Kerkhof, G.A., Dongen, H.P.A.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 155–166. [Google Scholar]
- Reilly, T.; Edwards, B. Altered sleep-wake cycles and physical performance in athletes. Physiol. Behav. 2007, 90, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, H.; Boukhris, O.; Abdessalem, R.; Trabelsi, K.; Ammar, A.; Shephard, R.J.; Chtourou, H. Effect of different nap opportunity durations on short-term maximal performance, attention, feelings, muscle soreness, fatigue, stress and sleep. Physiol. Behav. 2019, 211, 112673. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.A.; Banfi, G.; Galbiati, A.; Ferini-Strambi, L.; La Torre, A. Effect of a night game on actigraphy-based sleep quality and perceived recovery in top-level volleyball athletes. Int. J. Sports Physiol. Perform. 2019, 14, 265–269. [Google Scholar] [CrossRef]
- Fullagar, H.H.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P.; Halson, S.L.; Sargent, C.; Roach, G.D.; Nédélec, M.; Gupta, L.; Leeder, J.; Fullagar, H.H.; Coutts, A.J.; Edwards, B.J.; et al. Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. Br. J. Sports Med. 2021, 55, 356. [Google Scholar] [CrossRef]
- Bes, F.; Jobert, M.; Schulz, H. Modeling napping, post-lunch dip, and other variations in human sleep propensity. Sleep 2009, 32, 392–398. [Google Scholar] [CrossRef]
- Chtourou, H.; H’mida, C.; Boukhris, O.; Trabelsi, K.; Ammar, A.; Souissi, N. Nap opportunity as a strategy to improve short-term repetitive maximal performance during the 5-m shuttle run test: A brief review. Int. J. Sport Stud. Health 2019, 2, e97538. [Google Scholar] [CrossRef]
- Botonis, P.G.; Koutouvakis, N.; Toubekis, A.G. The impact of daytime napping on athletic performance–A narrative review. Scand. J. Med. Sci. Sports 2021, 31, 2164–2177. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion. J. Clin. Sleep Med. 2015, 11, 931–952. [Google Scholar] [CrossRef]
- Hilditch, C.J.; Dorrian, J.; Banks, S. A review of short naps and sleep inertia: Do naps of 30 min or less really avoid sleep inertia and slow-wave sleep? Sleep Med. 2017, 32, 176–190. [Google Scholar] [CrossRef]
- Romyn, G.; Lastella, M.; Miller, D.J.; Versey, N.G.; Roach, G.D.; Sargent, C. Daytime naps can be used to supplement night-time sleep in athletes. Chronobiol. Int. 2018, 35, 865–868. [Google Scholar] [CrossRef]
- Souissi, M.; Souissi, Y.; Bayoudh, A.; Knechtle, B.; Nikolaidis, P.T.; Chtourou, H. Effects of a 30 min nap opportunity on cognitive and short-duration high-intensity performances and mood states after a partial sleep deprivation night. J. Sports Sci. 2020, 38, 2553–2561. [Google Scholar] [CrossRef]
- Verweij, I.M.; Onuki, Y.; Van Someren, E.J.; Van der Werf, Y.D. Sleep to the beat: A nap favours consolidation of timing. Behav. Neurosci. 2016, 130, 298. [Google Scholar] [CrossRef] [PubMed]
- Mesas, A.E.; Núñez de Arenas-Arroyo, S.; Martinez-Vizcaino, V.; Garrido-Miguel, M.; Fernández-Rodríguez, R.; Bizzozero-Peroni, B.; Torres-Costoso, A.I. Is daytime napping an effective strategy to improve sport-related cognitive and physical performance and reduce fatigue? A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2023, 57, 417. [Google Scholar] [CrossRef] [PubMed]
- Boukhris, O.; Hill, D.W.; Ammar, A.; Trabelsi, K.; Hsouna, H.; Abdessalem, R.; Mezghanni, N.; Souissi, N.; Bragazzi, N.L.; Chamari, K. Longer nap duration during ramadan observance positively impacts 5-m shuttle run test performance performed in the afternoon. Front. Physiol. 2022, 13, 811435. [Google Scholar] [CrossRef] [PubMed]
- Romdhani, M.; Souissi, N.; Chaabouni, Y.; Mahdouani, K.; Driss, T.; Chamari, K.; Hammouda, O. Improved physical performance and decreased muscular and oxidative damage with postlunch napping after partial sleep deprivation in athletes. Int. J. Sports Physiol. Perform. 2020, 15, 874–883. [Google Scholar] [CrossRef]
- Petit, E.; Mougin, F.; Bourdin, H.; Tio, G.; Haffen, E. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. Eur. J. Appl. Physiol. 2014, 114, 305–315. [Google Scholar] [CrossRef]
- Boukhris, O.; Trabelsi, K.; Ammar, A.; Abdessalem, R.; Hsouna, H.; Glenn, J.M.; Bott, N.; Driss, T.; Souissi, N.; Hammouda, O. A 90 min daytime nap opportunity is better than 40 min for cognitive and physical performance. Int. J. Environ. Res. Public Health 2020, 17, 4650. [Google Scholar] [CrossRef]
- Lastella, M.; Lovell, G.P.; Sargent, C. Athletes’ precompetitive sleep behaviour and its relationship with subsequent precompetitive mood and performance. Eur. J. Sport Sci. 2014, 14, S123–S130. [Google Scholar] [CrossRef]
- Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J. Sports Sci. 2007, 25, 1557–1566. [Google Scholar] [CrossRef]
- Abdessalem, R.; Boukhris, O.; Hsouna, H.; Trabelsi, K.; Ammar, A.; Taheri, M.; Irandoust, K.; Hill, D.W.; Chtourou, H. Effect of napping opportunity at different times of day on vigilance and shuttle run performance. Chronobiol. Int. 2019, 36, 1334–1342. [Google Scholar] [CrossRef]
- Prajapati, B.; Dunne, M.; Armstrong, R. Sample size estimation and statistical power analyses. Optom. Today 2010, 16, 10–18. [Google Scholar]
- Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Lichstein, K.L.; Morin, C.M. Recommendations for a standard research assessment of insomnia. Sleep 2006, 29, 1155–1173. [Google Scholar] [CrossRef] [PubMed]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, H.; Boukhris, O.; Trabelsi, K.; Abdessalem, R.; Ammar, A.; Glenn, J.M.; Bott, N.; Souissi, N.; Lanteri, P.; Garbarino, S. A thirty-five-minute nap improves performance and attention in the 5-m shuttle run test during and outside Ramadan observance. Sports 2020, 8, 98. [Google Scholar] [CrossRef]
- Van Ravesteyn, L.M.; Tulen, J.H.; Kamperman, A.M.; Raats, M.E.; Schneider, A.; Birnie, E.; Steegers, E.A.; Hoogendijk, W.J.; Tiemeier, H.W.; Lambregtse–van den Berg, M.P. Perceived sleep quality is worse than objective parameters of sleep in pregnant women with a mental disorder. J. Clin. Sleep Med. 2014, 10, 1137–1141. [Google Scholar] [CrossRef]
- Hammouda, O.; Romdhani, M.; Chaabouni, Y.; Mahdouani, K.; Driss, T.; Souissi, N. Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint. Biol. Rhythm Res. 2018, 49, 927–939. [Google Scholar] [CrossRef]
- BenSalem, S.; Salem, A.; Boukhris, O.; Ammar, A.; Souissi, N.; Glenn, J.M.; Jahrami, H.; Trabelsi, K.; Chtourou, H. Enhanced physical performance, attention, and mood states after a nap opportunity following a sleep restriction night in female athletes: A randomized controlled trial. J. Sports Sci. 2025, 43, 477–489. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Hatta, T.; Yoshizaki, K.; Ito, Y.; Mase, M.; Kabasawa, H. Reliability and validity of the digit cancellation test, a brief screen of attention. Psychologia 2012, 55, 246–256. [Google Scholar] [CrossRef]
- Hooper, S.L.; Mackinnon, L.T. Monitoring Overtraining in Athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef]
- Boddington, M.K.; Lambert, M.I.; Gibson, A.S.C.; Noakes, T.D. Reliability of a 5-m multiple shuttle test. J. Sports Sci. 2001, 19, 223–228. [Google Scholar] [CrossRef]
- Borg, G. An Introduction to Borg’s RPE-Scale; Mouvement Publications: Jacksonville, FL, USA, 1985. [Google Scholar]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A practical approach to monitoring recovery: Development of a perceived recovery status scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Hoddes, E.; Zarcone, V.; Smythe, H.; Phillips, R.; Dement, W.C. Quantification of sleepiness: A new approach. Psychophysiology 1973, 10, 431–436. [Google Scholar] [CrossRef]
- Dierking, J.K.; Bemben, M.G.; Bemben, D.A.; Anderson, M.A. Validity of diagnostic ultrasound as a measure of delayed onset muscle soreness. J. Orthop. Sports Phys. Ther. 2000, 30, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. A New View of Statistics. 2002, 502, p. 411. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 27 August 2025).
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Boukhris, O.; Abdessalem, R.; Ammar, A.; Hsouna, H.; Trabelsi, K.; Engel, F.A.; Sperlich, B.; Hill, D.W.; Chtourou, H. Nap opportunity during the daytime affects performance and perceived exertion in 5-m shuttle run test. Front. Physiol. 2019, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-J. A new function of rapid eye movement sleep: Improvement of muscular efficiency. Physiol. Behav. 2015, 144, 110–115. [Google Scholar] [CrossRef]
- Besedovsky, L.; Cordi, M.; Wißlicen, L.; Martínez-Albert, E.; Born, J.; Rasch, B. Hypnotic enhancement of slow-wave sleep increases sleep-associated hormone secretion and reduces sympathetic predominance in healthy humans. Commun. Biol. 2022, 5, 747. [Google Scholar] [CrossRef]
- Zaffanello, M.; Pietrobelli, A.; Cavarzere, P.; Guzzo, A.; Antoniazzi, F. Complex relationship between growth hormone and sleep in children: Insights, discrepancies, and implications. Front. Endocrinol. 2024, 14, 1332114. [Google Scholar] [CrossRef]
- Rasch, B.; Born, J. About sleep’s role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef]
- Boukhris, O.; Trabelsi, K.; Suppiah, H.; Ammar, A.; Clark, C.C.T.; Jahrami, H.; Chtourou, H.; Driller, M. The Impact of Daytime Napping Following Normal Night-Time Sleep on Physical Performance: A Systematic Review, Meta-analysis and Meta-regression. Sports Med. 2024, 54, 323–345. [Google Scholar] [CrossRef]
- Stewart, D.; Farina, D.; Shen, C.; Macaluso, A. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J. Electromyogr. Kinesiol. 2011, 21, 418–422. [Google Scholar] [CrossRef]
- Lastella, M.; Halson, S.L.; Vitale, J.A.; Memon, A.R.; Vincent, G.E. To Nap or Not to Nap? A Systematic Review Evaluating Napping Behavior in Athletes and the Impact on Various Measures of Athletic Performance. Nat. Sci. Sleep 2021, 13, 841–862. [Google Scholar] [CrossRef]
- Mantua, J.; Spencer, R.M. Exploring the nap paradox: Are mid-day sleep bouts a friend or foe? Sleep Med. 2017, 37, 88–97. [Google Scholar] [CrossRef]
- Jiang, F.; Kobayashi, T.; Ichihashi, T.; Nomura, S. Effect of a relatively long afternoon nap on autonomous nervous activity, sleep architecture, and subjective sleep quality. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 1357–1361. [Google Scholar] [CrossRef]
- Howatson, G.; Goodall, S.; van Someren, K.A. The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur. J. Appl. Physiol. 2009, 105, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Keane, K.M.; Salicki, R.; Goodall, S.; Thomas, K.; Howatson, G. Muscle Damage Response in Female Collegiate Athletes After Repeated Sprint Activity. J. Strength Cond. Res. 2015, 29, 2802–2807. [Google Scholar] [CrossRef] [PubMed]
- Tassi, P.; Bonnefond, A.; Engasser, O.; Hoeft, A.; Eschenlauer, R.; Muzet, A. EEG spectral power and cognitive performance during sleep inertia: The effect of normal sleep duration and partial sleep deprivation. Physiol. Behav. 2006, 87, 177–184. [Google Scholar] [CrossRef]
- Matchock, R.L.; Mordkoff, J.T. Effects of sleep stage and sleep episode length on the alerting, orienting, and conflict components of attention. Exp. Brain Res. 2014, 232, 811–820. [Google Scholar] [CrossRef]
- Groeger, J.A.; Lo, J.C.Y.; Burns, C.G.; Dijk, D.-J. Effects of sleep inertia after daytime naps vary with executive load and time of day. Behav. Neurosci. 2011, 125, 252–260. [Google Scholar] [CrossRef]
- Brooks, A.; Lack, L. A brief afternoon nap following nocturnal sleep restriction: Which nap duration is most recuperative? Sleep 2006, 29, 831–840. [Google Scholar] [CrossRef]
- Brotherton, E.J.; Moseley, S.E.; Langan-Evans, C.; Pullinger, S.A.; Robertson, C.M.; Burniston, J.G.; Edwards, B.J. Effects of two nights partial sleep deprivation on an evening submaximal weightlifting performance; are 1 h powernaps useful on the day of competition? Chronobiol. Int. 2019, 36, 407–426. [Google Scholar] [CrossRef]




| Nap-13h | No-Nap-13h | Nap-15h | No-Nap-15h | |
|---|---|---|---|---|
| Best distance (m) | 135 (7.5) *,& | 115 (10) | 130 (5) & | 125 (10) |
| Total distance (m) | 747.5 (28.75) &,#,* | 650.75 (52.50) | 732.5 (57.50) | 630 (42.50) |
| Percentage decrement (%) | 6.17(6.15) | 8.84 (9.78) | 3.33 (5.51) | 12.67 (11.67) |
| Fatigue index (%) | 9.43 (6.24) | 17.86 (10.30) | 9.62 (13.41) | 15 (12.27) |
| RPE (a.u.) | 5.81/0.89 #,*,& | 4.54/1.45 | 4.50/0.67 | 4.12/0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebabli, A.; Delleli, S.; Mahdi, N.; Ben Maaoui, K.; Del Coso, J.; Chtourou, H.; Ardigò, L.P.; Ouergui, I. Effect of a 90-Minute Nap at Different Times of the Day on Physical Performance, Psycho-Cognitive Responses, and Perceived Recovery in Trained Youth Male Athletes. Sports 2025, 13, 395. https://doi.org/10.3390/sports13110395
Jebabli A, Delleli S, Mahdi N, Ben Maaoui K, Del Coso J, Chtourou H, Ardigò LP, Ouergui I. Effect of a 90-Minute Nap at Different Times of the Day on Physical Performance, Psycho-Cognitive Responses, and Perceived Recovery in Trained Youth Male Athletes. Sports. 2025; 13(11):395. https://doi.org/10.3390/sports13110395
Chicago/Turabian StyleJebabli, Arwa, Slaheddine Delleli, Nourhène Mahdi, Khouloud Ben Maaoui, Juan Del Coso, Hamdi Chtourou, Luca Paolo Ardigò, and Ibrahim Ouergui. 2025. "Effect of a 90-Minute Nap at Different Times of the Day on Physical Performance, Psycho-Cognitive Responses, and Perceived Recovery in Trained Youth Male Athletes" Sports 13, no. 11: 395. https://doi.org/10.3390/sports13110395
APA StyleJebabli, A., Delleli, S., Mahdi, N., Ben Maaoui, K., Del Coso, J., Chtourou, H., Ardigò, L. P., & Ouergui, I. (2025). Effect of a 90-Minute Nap at Different Times of the Day on Physical Performance, Psycho-Cognitive Responses, and Perceived Recovery in Trained Youth Male Athletes. Sports, 13(11), 395. https://doi.org/10.3390/sports13110395

