Next Article in Journal / Special Issue
Self-Gravitating Systems in Extended Gravity
Previous Article in Journal
Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter
Previous Article in Special Issue
Generalized Curvature-Matter Couplings in Modified Gravity
Article Menu

Export Article

Open AccessArticle
Galaxies 2014, 2(4), 496-519; doi:10.3390/galaxies2040496

Bianchi Type I Cosmological Models in Eddington-inspired Born–Infeld Gravity

1
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
2
Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa, Portugal
3
Department of Computing and Information Management, Hong Kong Institute of Vocational Education, Chai Wan, Hong Kong, China
*
Author to whom correspondence should be addressed.
Received: 13 September 2014 / Revised: 15 October 2014 / Accepted: 20 October 2014 / Published: 28 October 2014
(This article belongs to the Special Issue Beyond Standard Gravity and Cosmology)
View Full-Text   |   Download PDF [1102 KB, uploaded 28 October 2014]   |  

Abstract

We consider the dynamics of a barotropic cosmological fluid in an anisotropic, Bianchi type I space-time in Eddington-inspired Born–Infeld (EiBI) gravity. By assuming isotropic pressure distribution, we obtain the general solution of the field equations in an exact parametric form. The behavior of the geometric and thermodynamic parameters of the Bianchi type I Universe is studied, by using both analytical and numerical methods, for some classes of high density matter, described by the stiff causal, radiation, and pressureless fluid equations of state. In all cases the study of the models with different equations of state can be reduced to the integration of a highly nonlinear second order ordinary differential equation for the energy density. The time evolution of the anisotropic Bianchi type I Universe strongly depends on the initial values of the energy density and of the Hubble function. An important observational parameter, the mean anisotropy parameter, is also studied in detail, and we show that for the dust filled Universe the cosmological evolution always ends into isotropic phase, while for high density matter filled universes the isotropization of Bianchi type I universes is essentially determined by the initial conditions of the energy density. View Full-Text
Keywords: Bianchi type I models; Eddington-inspired Born–Infeld gravity; modified gravity; cosmology Bianchi type I models; Eddington-inspired Born–Infeld gravity; modified gravity; cosmology
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Harko, T.; Lobo, F.S.; Mak, M.K. Bianchi Type I Cosmological Models in Eddington-inspired Born–Infeld Gravity. Galaxies 2014, 2, 496-519.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Galaxies EISSN 2075-4434 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top