Associations of Real-Time Ultrasound and Strain and Shear Wave Elastography with Gastrointestinal Organs: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Protocol Development and Search Strategy
2.2. Data Extraction
2.3. Risk of Bias
3. Results
3.1. Demographic Characteristics
3.2. Imaging Modalities and Their Utility
3.3. Subgroup Analyses
4. Discussion
4.1. Use in Non-Gastrointestinal Tissues
4.2. Use in Gastrointestinal Tissues
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gennisson, J.L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef]
- Shiina, T.; Nightingale, K.R.; Palmeri, M.L.; Hall, T.J.; Bamber, J.C.; Barr, R.G.; Castera, L.; Choi, B.I.; Chou, Y.H.; Cosgrove, D.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound Med. Biol. 2015, 41, 1126–1147. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Drakonaki, E.E.; Allen, G.M.; Wilson, D.J. Ultrasound elastography for musculoskeletal applications. Br. J. Radiol. 2012, 85, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Paluch, Ł.; Nawrocka-Laskus, E.; Wieczorek, J.; Mruk, B.; Frel, M.; Walecki, J. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System. Pol. J. Radiol. 2016, 81, 240–246. [Google Scholar] [CrossRef]
- Shen, M.; Lee, A.; Lefkowitch, J.H.; Worman, H.J. Vibration-controlled Transient Elastography for Assessment of Liver Fibrosis at a USA Academic Medical Center. J. Clin. Transl. Hepatol. 2022, 10, 197–206. [Google Scholar] [CrossRef]
- Rosenthal, M.H.; Lee, A.; Jajoo, K. Imaging and Endoscopic Approaches to Pancreatic Cancer. Hematol. Oncol. Clin. North Am. 2015, 29, 675–699. [Google Scholar] [CrossRef]
- Risk of Bias Tools. Risk of Bias Info. 2023. Available online: https://www.riskofbias.info/ (accessed on 13 October 2023).
- Vidal-Casariego, A.; López-González, L.; Jiménez-Pérez, A.; Ballesteros-Pomar, M.D.; Kyriakos, G.; Urioste-Fondo, A.; Álvarez-San Martín, R.; Cano-Rodríguez, I.; Jiménez-García de la Marina, J.M. Accuracy of ultrasound elastography in the diagnosis of thyroid cancer in a low-risk population. Exp. Clin. Endocrinol. Diabetes 2012, 120, 635–638. [Google Scholar] [CrossRef]
- Azizi, G.; Keller, J.M.; Mayo, M.L.; Piper, K.; Puett, D.; Earp, K.M.; Malchoff, C.D. Thyroid Nodules and Shear Wave Elastography: A New Tool in Thyroid Cancer Detection. Ultrasound Med. Biol. 2015, 41, 2855–2865. [Google Scholar] [CrossRef]
- Dighe, M.; Luo, S.; Cuevas, C.; Kim, Y. Efficacy of thyroid ultrasound elastography in differential diagnosis of small thyroid nodules. Eur. J. Radiol. 2013, 82, e274–e280. [Google Scholar] [CrossRef]
- Unlütürk, U.; Erdoğan, M.F.; Demir, O.; Güllü, S.; Başkal, N. Ultrasound elastography is not superior to grayscale ultrasound in predicting malignancy in thyroid nodules. Thyroid 2012, 22, 1031–1038. [Google Scholar] [CrossRef]
- Çakal, E.; Karaköse, M.; Öztürk Ünsal, İ.; Şahin, M.; Uçan, B.; Özbek, M. The diagnostic value of elastography score and strain index for the evaluation of thyroid micronodules. Turk. J. Med. Sci. 2018, 48, 1048–1052. [Google Scholar] [CrossRef]
- Asteria, C.; Giovanardi, A.; Pizzocaro, A.; Cozzaglio, L.; Morabito, A.; Somalvico, F.; Zoppo, A. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008, 18, 523–531. [Google Scholar] [CrossRef]
- Elsayed, N.M.; Elkhatib, Y.A. Diagnostic Criteria and Accuracy of Categorizing Malignant Thyroid Nodules by Ultrasonography and Ultrasound Elastography with Pathologic Correlation. Ultrason. Imaging 2016, 38, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, V.; Lodise, P.; Di Rocco, G.; Grazhdani, H.; Giannotti, D.; Patrizi, G.; Medvedyeva, E.; Olive, M.; Fioravanti, C.; Giacomelli, L.; et al. Diagnostic accuracy and interobserver agreement of Quasistatic Ultrasound Elastography in the diagnosis of thyroid nodules. Ultraschall. Med. 2015, 36, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.R.; Ji, C.L.; Wu, Y.; Gu, X.G. Combination of ultrasound elastography with TI-RADS in the diagnosis of small thyroid nodules (≤10 mm): A new method to increase the diagnostic performance. Eur. J. Radiol. 2018, 109, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kim, E.K.; Kwak, J.Y.; Park, V.Y.; Moon, H.J. Application of Various Additional Imaging Techniques for Thyroid Ultrasound: Direct Comparison of Combined Various Elastography and Doppler Parameters to Gray-Scale Ultrasound in Differential Diagnosis of Thyroid Nodules. Ultrasound Med. Biol. 2018, 44, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhai, D.; Zhang, T.; Zhang, S. Use of strain ultrasound elastography versus fine-needle aspiration cytology for the differential diagnosis of thyroid nodules: A retrospective analysis. Clinics 2020, 75, e1594. [Google Scholar] [CrossRef] [PubMed]
- Gay, S.; Schiaffino, S.; Santamorena, G.; Massa, B.; Ansaldo, G.; Turtulici, G.; Giusti, M. Role of Strain Elastography and Shear-Wave Elastography in a Multiparametric Clinical Approach to Indeterminate Cytology Thyroid Nodules. Med. Sci. Monit. 2018, 24, 6273–6279. [Google Scholar] [CrossRef]
- Russ, G.; Royer, B.; Bigorgne, C.; Rouxel, A.; Bienvenu-Perrard, M.; Leenhardt, L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur. J. Endocrinol. 2013, 168, 649–655. [Google Scholar] [CrossRef]
- Li, H.; Kang, C.; Xue, J.; Jing, L.; Miao, J. Influence of lesion size on shear wave elastography in the diagnosis of benign and malignant thyroid nodules. Sci. Rep. 2021, 11, 21616. [Google Scholar] [CrossRef]
- Wu, H.X.; Zhang, B.J.; Wang, J.; Zhu, B.L.; Zang, Y.P.; Cao, Y.L. Conventional ultrasonography and real time ultrasound elastography in the differential diagnosis of degenerating cystic thyroid nodules mimicking malignancy and papillary thyroid carcinomas. Asian. Pac. J. Cancer. Prev. 2013, 14, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Seong, M.; Shin, J.H.; Hahn, S.Y. Ultrasound Strain Elastography for Circumscribed Solid Thyroid Nodules without Malignant Features Categorized as Indeterminate by B-Mode Ultrasound. Ultrasound Med. Biol. 2016, 42, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.S.; Tong, C.S.; Cho, C.C.; Yuen, E.H.; Lee, Y.Y.; Ahuja, A.T. Shear wave elastography of thyroid nodules in routine clinical practice: Preliminary observations and utility for detecting malignancy. Eur. Radiol. 2012, 22, 2397–2406. [Google Scholar] [CrossRef]
- Huang, S.T.; Zhang, B.; Yin, H.L.; Li, B.; Liao, J.T.; Wang, Y.B. Incremental diagnostic value of shear wave elastography combined with contrast-enhanced ultrasound in TI-RADS category 4a and 4b nodules. J. Med. Ultrason. 2020, 47, 453–462. [Google Scholar] [CrossRef]
- Rigamonti, C.; Donato, M.F.; Fraquelli, M.; Agnelli, F.; Ronchi, G.; Casazza, G.; Rossi, G.; Colombo, M. Transient elastography predicts fibrosis progression in patients with recurrent hepatitis C after liver transplantation. Gut 2008, 57, 821–827. [Google Scholar] [CrossRef]
- Sporea, I.; Sirli, R.; Deleanu, A.; Tudora, A.; Curescu, M.; Cornianu, M.; Lazar, D. Comparison of the liver stiffness measurement by transient elastography with the liver biopsy. World J. Gastroenterol. 2008, 14, 6513–6517. [Google Scholar] [CrossRef]
- Abrams, G.A.; Jamal, H.; Deeter, W.T., 3rd; Patil, N. LOGIQ E9 Shear Wave Elastrography for Detection of Liver Fibrosis in Patients with Chronic Hepatitis C Virus. South. Med. J. 2016, 109, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Aggarwal, S.; Shalimar; Yadav, R.; Datta Gupta, S.; Agarwal, L.; Agarwal, S. Utility of transient elastography (fibroscan) and impact of bariatric surgery on nonalcoholic fatty liver disease (NAFLD) in morbidly obese patients. Surg. Obes. Relat. Dis. 2018, 14, 81–91. [Google Scholar] [CrossRef]
- Montes Ramirez, M.L.; Pascual-Pareja, J.F.; Sánchez-Conde, M.; Bernardino De la Serna, J.I.; Zamora Vargas, F.X.; Miralles, P.; Castro, J.M.; Ramírez, M.; Gutierrez, I.; Gonzalez-García, J.; et al. Transient elastography to rule out esophageal varices and portal hypertensive gastropathy in HIV-infected individuals with liver cirrhosis. AIDS 2012, 26, 1807–1812. [Google Scholar] [CrossRef]
- Malik, R.; Lai, M.; Sadiq, A.; Farnan, R.; Mehta, S.; Nasser, I.; Challies, T.; Schuppan, D.; Afdhal, N. Comparison of transient elastography, serum markers and clinical signs for the diagnosis of compensated cirrhosis. J. Gastroenterol. Hepatol. 2010, 25, 1562–1568. [Google Scholar] [CrossRef]
- Corpechot, C.; Gaouar, F.; El Naggar, A.; Kemgang, A.; Wendum, D.; Poupon, R.; Carrat, F.; Chazouillères, O. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014, 146, 970–979. [Google Scholar] [CrossRef]
- Miailhes, P.; Pradat, P.; Chevallier, M.; Lacombe, K.; Bailly, F.; Cotte, L.; Trabaud, M.A.; Boibieux, A.; Bottero, J.; Trepo, C.; et al. Proficiency of transient elastography compared to liver biopsy for the assessment of fibrosis in HIV/HBV-coinfected patients. J. Viral. Hepat. 2011, 18, 61–69. [Google Scholar] [CrossRef]
- Lee, M.H.; Cheong, J.Y.; Um, S.H.; Seo, Y.S.; Kim, D.J.; Hwang, S.G.; Yang, J.M.; Han, K.H.; Cho, S.W. Comparison of surrogate serum markers and transient elastography (Fibroscan) for assessing cirrhosis in patients with chronic viral hepatitis. Dig. Dis. Sci. 2010, 55, 3552–3560. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Soejima, Y.; Taketomi, A.; Yoshizumi, T.; Ikegami, T.; Yamashita, Y.; Itoh, S.; Kuroda, Y.; Maehara, Y. Assessment of graft fibrosis by transient elastography in patients with recurrent hepatitis C after living donor liver transplantation. Transplantation 2008, 85, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Gara, N.; Zhao, X.; Kleiner, D.E.; Liang, T.J.; Hoofnagle, J.H.; Ghany, M.G. Discordance among transient elastography, aspartate aminotransferase to platelet ratio index, and histologic assessments of liver fibrosis in patients with chronic hepatitis C. Clin. Gastroenterol. Hepatol. 2013, 11, 303–308.e1. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.X.; Zimmer, S.; Niu, S.; Crotty, P.; Tracey, J.; Pradhan, F.; Shaheen, A.A.; Coffin, C.S.; Heitman, S.J.; Kaplan, G.G.; et al. Liver stiffness by transient elastography predicts liver-related complications and mortality in patients with chronic liver disease. PLoS ONE 2014, 9, e95776. [Google Scholar] [CrossRef]
- Gómez-Dominguez, E.; Mendoza, J.; García-Buey, L.; Trapero, M.; Gisbert, J.P.; Jones, E.A.; Moreno-Otero, R. Transient elastography to assess hepatic fibrosis in primary biliary cirrhosis. Aliment. Pharmacol. Ther. 2008, 27, 441–447. [Google Scholar] [CrossRef]
- Seo, Y.S.; Kim, M.N.; Kim, S.U.; Kim, S.G.; Um, S.H.; Han, K.H.; Kim, Y.S. Risk Assessment of Hepatocellular Carcinoma Using Transient Elastography Vs. Liver Biopsy in Chronic Hepatitis B Patients Receiving Antiviral Therapy. Medicine 2016, 95, e2985. [Google Scholar] [CrossRef]
- Xie, X.; Feng, Y.; Lyu, Z.; Wang, L.; Yang, Y.; Bai, Y.; Liu, C.; Wu, H.; Ren, W.; Zhu, Q. The Combination of Shear Wave Elastography and Platelet Counts Can Effectively Predict High-Risk Varices in Patients with Hepatitis B-Related Cirrhosis. Biomed. Res. Int. 2021, 2021, 6635963. [Google Scholar] [CrossRef]
- Beckebaum, S.; Iacob, S.; Klein, C.G.; Dechêne, A.; Varghese, J.; Baba, H.A.; Sotiropoulos, G.C.; Paul, A.; Gerken, G.; Cicinnati, V.R. Assessment of allograft fibrosis by transient elastography and noninvasive biomarker scoring systems in liver transplant patients. Transplantation 2010, 89, 983–993. [Google Scholar] [CrossRef]
- Obara, N.; Ueno, Y.; Fukushima, K.; Nakagome, Y.; Kakazu, E.; Kimura, O.; Wakui, Y.; Kido, O.; Ninomiya, M.; Kogure, T.; et al. Transient elastography for measurement of liver stiffness measurement can detect early significant hepatic fibrosis in Japanese patients with viral and nonviral liver diseases. J. Gastroenterol. 2008, 43, 720–728. [Google Scholar] [CrossRef]
- Endo, M.; Soroida, Y.; Sato, M.; Kobayashi, T.; Hikita, H.; Sato, M.; Gotoh, H.; Iwai, T.; Sone, S.; Sasano, T.; et al. Ultrasound evaluation of liver stiffness: Accuracy of ultrasound imaging for the prediction of liver cirrhosis as evaluated using a liver stiffness measurement. J. Med. Dent. Sci. 2017, 64, 27–34. [Google Scholar] [CrossRef]
- Ooi, C.C.; Richards, P.J.; Maffulli, N.; Ede, D.; Schneider, M.E.; Connell, D.; Morrissey, D.; Malliaras, P. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J. Sci. Med. Sport. 2016, 19, 373–378. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Lin, M.Y.; Hu, W.H.; Li, W.Y.; Bai, S.J. Gray-scale ultrasonography combined with elastography imaging for the evaluation of papillary thyroid microcarcinoma: As a prognostic clinicopathology factor. Ultrasound Med. Biol. 2014, 40, 1769–1777. [Google Scholar] [CrossRef]
- Chae, S.Y.; Jung, H.N.; Ryoo, I.; Suh, S. Differentiating cervical metastatic lymphadenopathy and lymphoma by shear wave elastography. Sci. Rep. 2019, 9, 12396. [Google Scholar] [CrossRef] [PubMed]
- Desmots, F.; Fakhry, N.; Mancini, J.; Reyre, A.; Vidal, V.; Jacquier, A.; Santini, L.; Moulin, G.; Varoquaux, A. Shear Wave Elastography in Head and Neck Lymph Node Assessment: Image Quality and Diagnostic Impact Compared with B-Mode and Doppler Ultrasonography. Ultrasound Med. Biol. 2016, 42, 387–398. [Google Scholar] [CrossRef]
- Alam, F.; Naito, K.; Horiguchi, J.; Fukuda, H.; Tachikake, T.; Ito, K. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: Comparison with conventional B-mode sonography. AJR. Am. J. Roentgenol. 2008, 191, 604–610. [Google Scholar] [CrossRef]
- Lo, W.C.; Hsu, W.L.; Wang, C.T.; Cheng, P.W.; Liao, L.J. Incorporation of shear wave elastography into a prediction model in the assessment of cervical lymph nodes. PLoS ONE 2019, 14, e0221062. [Google Scholar] [CrossRef] [PubMed]
- Lenghel, L.M.; Botar Jid, C.; Bolboaca, S.D.; Ciortea, C.; Vasilescu, D.; Baciut, G.; Dudea, S.M. Comparative study of three sonoelastographic scores for differentiation between benign and malignant cervical lymph nodes. Eur. J. Radiol. 2015, 84, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Jia, W.; Shi, J.; Yuan, C.; Zhang, Y.; Chen, M. Role of Elastography in Axillary Examination of Patients with Breast Cancer. J. Ultrasound Med. 2018, 37, 699–707. [Google Scholar] [CrossRef]
- Paterson, S.; Duthie, F.; Stanley, A.J. Endoscopic ultrasound-guided elastography in the nodal staging of oesophageal cancer. World J. Gastroenterol. 2012, 18, 889–895. [Google Scholar] [CrossRef]
- Choi, J.J.; Kang, B.J.; Kim, S.H.; Lee, J.H.; Jeong, S.H.; Yim, H.W.; Song, B.J.; Jung, S.S. Role of sonographic elastography in the differential diagnosis of axillary lymph nodes in breast cancer. J. Ultrasound Med. 2011, 30, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, J.H.; Lim, H.K.; Kim, S.Y.; Han, M.W.; Cho, K.J.; Baek, J.H. Quantitative shear wave elastography in the evaluation of metastatic cervical lymph nodes. Ultrasound Med. Biol. 2013, 39, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Nakajima, T.; Inage, T.; Sata, Y.; Sakairi, Y.; Tamura, H.; Wada, H.; Suzuki, H.; Chiyo, M.; Yoshino, I. The combination of endobronchial elastography and sonographic findings during endobronchial ultrasound-guided transbronchial needle aspiration for predicting nodal metastasis. Thorac. Cancer 2019, 10, 2000–2005. [Google Scholar] [CrossRef]
- Verhoeven, R.L.J.; Trisolini, R.; Leoncini, F.; Candoli, P.; Bezzi, M.; Messi, A.; Krasnik, M.; de Korte, C.L.; Annema, J.T.; van der Heijden, E.H.F.M. Predictive Value of Endobronchial Ultrasound Strain Elastography in Mediastinal Lymph Node Staging: The E-Predict Multicenter Study Results. Respiration 2020, 99, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Omar, N.; Ab Mumin, N.; Ramli Hamid, M.T.; Vijayananthan, A.; Rahmat, K. Diagnostic Accuracy of Shear Wave Elastography as an Adjunct Tool in Detecting Axillary Lymph Nodes Metastasis. Acad. Radiol. 2022, 29 (Suppl. S1), S69–S78. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Sohn, Y.M. Differentiation of benign and metastatic axillary lymph nodes in breast cancer: Additive value of shear wave elastography to B-mode ultrasound. Clin. Imaging 2018, 50, 258–263. [Google Scholar] [CrossRef]
- Ogata, D.; Uematsu, T.; Yoshikawa, S.; Kiyohara, Y. Accuracy of real-time ultrasound elastography in the differential diagnosis of lymph nodes in cutaneous malignant melanoma (CMM): A pilot study. Int. J. Clin. Oncol. 2014, 19, 716–721. [Google Scholar] [CrossRef]
- Taylor, K.; O’Keeffe, S.; Britton, P.D.; Wallis, M.G.; Treece, G.M.; Housden, J.; Parashar, D.; Bond, S.; Sinnatamby, R. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: A pilot study. Clin. Radiol. 2011, 66, 1064–1071. [Google Scholar] [CrossRef]
- Acu, L.; Oktar, S.Ö.; Acu, R.; Yücel, C.; Cebeci, S. Value of Ultrasound Elastography in the Differential Diagnosis of Cervical Lymph Nodes: A Comparative Study With B-mode and Color Doppler Sonography. J. Ultrasound Med. 2016, 35, 2491–2499. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Dhalluin, X.; Wallyn, F.; Machuron, F.; Bouchindhomme, B.; Copin, M.C.; Valentin, V. Performance of Endobronchial Ultrasound Elastography in the Differentiation of Malignant and Benign Mediastinal Lymph Nodes: Results in Real-life Practice. J. Bronchology. Interv. Pulmonol. 2019, 26, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Korrungruang, P.; Boonsarngsuk, V. Diagnostic value of endobronchial ultrasound elastography for the differentiation of benign and malignant intrathoracic lymph nodes. Respirology 2017, 22, 972–977. [Google Scholar] [CrossRef]
- Larsen, M.H.; Fristrup, C.; Hansen, T.P.; Hovendal, C.P.; Mortensen, M.B. Endoscopic ultrasound, endoscopic sonoelastography, and strain ratio evaluation of lymph nodes with histology as gold standard. Endoscopy 2012, 44, 759–766. [Google Scholar] [CrossRef]
- Havre, R.F.; Leh, S.M.; Gilja, O.H.; Ødegaard, S.; Waage, J.E.; Baatrup, G.; Nesje, L.B. Differentiation of Metastatic and Non-Metastatic Mesenteric Lymph Nodes by Strain Elastography in Surgical Specimens. Ultraschall. Med. 2016, 37, 366–372. [Google Scholar] [CrossRef]
- Che, D.; Zhou, X.; Sun, M.L.; Wang, X.; Jiang, Z.; Changjun, W. Differentiation of metastatic cervical lymph nodes with ultrasound elastography by virtual touch tissue imaging: Preliminary study. J. Ultrasound Med. 2015, 34, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, M.; Gurbuz, M.K.; Cingi, C.; Adapinar, B.; Değirmenci, A.N.; Acikalin, F.M.; Pinarbaşli, M.Ö.; Colak, E. Diagnostic role of ultrasound elastography on lymph node metastases in patients with head and neck cancer. Braz. J. Otorhinolaryngol. 2019, 85, 297–302. [Google Scholar] [CrossRef]
- Fang, S.; Chang, L.; Chen, F.; Mao, X.; Gu, W. Endobronchial Ultrasound Elastography Combined with Computed Tomography in Differentiating Benign from Malignant Intrathoracic Lymph Nodes. Surg. Innov. 2021, 28, 590–599. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, X.; Mao, X.; Wang, L.; Xiong, H.; Herth, F.J.F.; Han, B. Endobronchial Ultrasound Elastography for Evaluation of Intrathoracic Lymph Nodes: A Pilot Study. Respiration 2017, 93, 327–338. [Google Scholar] [CrossRef]
- Lin, C.K.; Yu, K.L.; Chang, L.Y.; Fan, H.J.; Wen, Y.F.; Ho, C.C. Differentiating malignant and benign lymph nodes using endobronchial ultrasound elastography. J. Formos. Med. Assoc. 2019, 118, 436–443. [Google Scholar] [CrossRef]
- Cha, S.W.; Kim, I.Y.; Kim, Y.W. Quantitative measurement of elasticity of the appendix using shear wave elastography in patients with suspected acute appendicitis. PLoS ONE 2014, 9, e101292. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Memo, R.; Schaub, C.R. Shear wave ultrasound elastography of the prostate: Initial results. Ultrasound Q. 2012, 28, 13–20. [Google Scholar] [CrossRef]
- Li, T.; Lu, M.; Li, Y.; Li, J.; Hu, Z.; Li, X.; Cheng, X.; Jiang, J.; Tan, B. Quantitative Elastography of Rectal Lesions: The Value of Shear Wave Elastography in Identifying Benign and Malignant Rectal Lesions. Ultrasound Med. Biol. 2019, 45, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Suhara, H.; Hirooka, Y.; Kawashima, H.; Ohno, E.; Ishikawa, T.; Nakamura, M.; Miyahara, R.; Ishigami, M.; Hashimoto, S.; Goto, H. Transabdominal ultrasound elastography of the esophagogastric junction predicts reflux esophagitis. J. Med. Ultrason. 2019, 46, 99–104. [Google Scholar] [CrossRef]
- Rustemović, N.; Kalauz, M.; Grubelić Ravić, K.; Iveković, H.; Bilić, B.; Ostojić, Z.; Opačić, D.; Ledinsky, I.; Majerović, M.; Višnjić, A. Differentiation of Pancreatic Masses via Endoscopic Ultrasound Strain Ratio Elastography Using Adjacent Pancreatic Tissue as the Reference. Pancreas 2017, 46, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Ishikawa, T.; Ohno, E.; Iida, T.; Suzuki, H.; Uetsuki, K.; Furukawa, K.; Nakamura, M.; Honda, T.; Ishigami, M.; et al. Endoscopic ultrasound elastography for small solid pancreatic lesions with or without main pancreatic duct dilatation. Pancreatology 2021, 21, 451–458. [Google Scholar] [CrossRef]
- Carrara, S.; Di Leo, M.; Grizzi, F.; Correale, L.; Rahal, D.; Anderloni, A.; Auriemma, F.; Fugazza, A.; Preatoni, P.; Maselli, R.; et al. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions. Gastrointest. Endosc. 2018, 87, 1464–1473. [Google Scholar] [CrossRef]
- Ignee, A.; Jenssen, C.; Arcidiacono, P.G.; Hocke, M.; Möller, K.; Saftoiu, A.; Will, U.; Fusaroli, P.; Iglesias-Garcia, J.; Ponnudurai, R.; et al. Endoscopic ultrasound elastography of small solid pancreatic lesions: A multicenter study. Endoscopy 2018, 50, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Okasha, H.; Elkholy, S.; El-Sayed, R.; Wifi, M.N.; El-Nady, M.; El-Nabawi, W.; El-Dayem, W.A.; Radwan, M.I.; Farag, A.; El-Sherif, Y.; et al. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions. World J. Gastroenterol. 2017, 23, 5962–5968. [Google Scholar] [CrossRef]
- Ahmad, S.; Cao, R.; Varghese, T.; Bidaut, L.; Nabi, G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg. Endosc. 2013, 27, 3280–3287. [Google Scholar] [CrossRef]
- Aghaghazvini, L.; Maheronnaghsh, R.; Soltani, A.; Rouzrokh, P.; Chavoshi, M. Diagnostic value of shear wave sonoelastography in differentiation of benign from malignant thyroid nodules. Eur. J. Radiol. 2020, 126, 108926. [Google Scholar] [CrossRef]
- Wang, F.; Chang, C.; Gao, Y.; Chen, Y.L.; Chen, M.; Feng, L.Q. Does Shear Wave Elastography Provide Additional Value in the Evaluation of Thyroid Nodules That Are Suspicious for Malignancy? J. Ultrasound Med. 2016, 35, 2397–2404. [Google Scholar] [CrossRef]
- Azizi, G.; Keller, J.; Lewis, M.; Puett, D.; Rivenbark, K.; Malchoff, C. Performance of elastography for the evaluation of thyroid nodules: A prospective study. Thyroid 2013, 23, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chang, C.; Chen, M.; Gao, Y.; Chen, Y.L.; Zhou, S.C.; Li, J.W.; Zhi, W.X. Does Lesion Size Affect the Value of Shear Wave Elastography for Differentiating Between Benign and Malignant Thyroid Nodules? J. Ultrasound Med. 2018, 37, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Kratky, J.; Vitkova, H.; Bartakova, J.; Lukas, J.; Jiskra, J. Neck Muscles and Content of Carotid Artery as Reference Tissue for Strain Ratio—A Novel Approach to Improve the Diagnostic Performance of Thyroid Elastography? Exp. Clin. Endocrinol. Diabetes 2016, 124, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Unalp-Arida, A.; Ruhl, C.E. Transient Elastography-Assessed Hepatic Steatosis and Fibrosis Are Associated with Body Composition in the United States. Clin. Gastroenterol. Hepatol. 2022, 20, e808–e830. [Google Scholar] [CrossRef]
- Yada, N.; Tamaki, N.; Koizumi, Y.; Hirooka, M.; Nakashima, O.; Hiasa, Y.; Izumi, N.; Kudo, M. Diagnosis of Fibrosis and Activity by a Combined Use of Strain and Shear Wave Imaging in Patients with Liver Disease. Dig. Dis. 2017, 35, 515–520. [Google Scholar] [CrossRef]
- Loft, M.K.; Pedersen, M.R.V.; Rahr, H.B.; Rafaelsen, S.R. Can Ultrasound Elastography Discriminate between Rectal Adenoma and Cancer? A Systematic Review. Cancers 2021, 13, 4158. [Google Scholar] [CrossRef]
- Kawada, N.; Tanaka, S. Elastography for the pancreas: Current status and future perspective. World J. Gastroenterol. 2016, 22, 3712–3724. [Google Scholar] [CrossRef]
- Navarro, B.; Ubeda, B.; Vallespí, M.; Wolf, C.; Casas, L.; Browne, J.L. Role of elastography in the assessment of breast lesions: Preliminary results. J. Ultrasound Med. 2011, 30, 313–321. [Google Scholar] [CrossRef]
Judgement | Percentage % | Number | Clinical Trials (n = 2) | Prospective Studies (n = 70) | Retrospective Studies (n = 6) |
---|---|---|---|---|---|
Good | 85.9 | 67 | 2 | 62 | 3 |
Fair | 14.1 | 11 | 0 | 8 | 3 |
Poor | 0 | 0 | 0 | 0 | 0 |
Author | N | Age (years) | Males | Females | Sensitivity | Specificity | AUC | Accuracy | PPV | NPV |
---|---|---|---|---|---|---|---|---|---|---|
Casariego et al. [9] | 128 | 56.1 | 12 | 116 | 25 | 86.9 | - | - | 8.3 | 96.1 |
Azizi et al. [10] | 676 | 51.2 | 97 | 579 | 79.3 | 71.5 | - | - | 26.8 | 96.3 |
Dighe et al. [11] | 35 | 51.6 | 7 | 28 | 100 | 60 | 0.81 | - | - | - |
Unlütürk et al. [12] | 194 | 47 | 37 | 157 | 47 | 80 | - | 72 | 44 | 83 |
Cakal et al. [13] | 224 | 46.5 | 26 | 198 | 79.4 | 98.1 | 0.89 | - | - | - |
Asteria et al. [14] | 66 | 55 | 54 | 12 | 94.1 | 81 | - | 83.7 | 55.2 | 98.2 |
Elsayed et al. [15] | 88 | 45 | 14 | 74 | 75 | 69.8 | - | 70.8 | 38.7 | 91.6 |
Cantisiani et al. [16] | 50 | 58 | 4 | 46 | 90 | 92.7 | 0.96 | 86.9 | - | - |
Du et al. [17] | 142 | 40 | 58 | 122 | 94.4 | 87.1 | - | 70.4 | 65.9 | 79.2 |
Yoon et al. [18] | 169 | 50.3 | 31 | 138 | 81 | 56.5 | 0.69 | 65.5 | 52 | 83.6 |
Yang et al. [19] | 205 | 50.25 | 38 | 167 | 100 | - | - | 94.8 | - | - |
Gay et al. [20] | 81 | 59.4 | 24 | 57 | 50 | 86.7 | 0.73 | - | - | - |
Russ et al. [21] | 3543 | 54 | 0 | 0 | 98.5 | 44.7 | - | 48.3 | - | 99.8 |
Li et al. [22] | 280 | 48 | 64 | 216 | 76.5 | 78.4 | 0.83 | - | - | - |
Wu et al. [23] | 19 | 46 | 7 | 12 | 16.7 | 100 | - | 88 | - | - |
Seong et al. [24] | 196 | 51.1 | 35 | 161 | 50 | 57.2 | - | 56.3 | 14 | 89.2 |
Bhatia et al. [25] | 74 | 52.8 | 16 | 58 | 76.9 | 71.1 | - | - | - | - |
Huang et al. [26] | 69 | 44 | 17 | 52 | 68.75 | 91.3 | 0.84 | - | - | - |
Rigamonti et al. [27] | 90 | 58 | 73 | 17 | 93 | 93 | 0.9 | - | 74 | 99 |
Sporea et al. [28] | 199 | 49.79 | 61 | 138 | 59.6 | 93.3 | 0.77 | - | 98 | 30.1 |
Abrams et al. [29] | 43 | 0 | 0 | 0 | 69.2 | 73.3 | - | - | 52.9 | 84.6 |
Garg et al. [30] | 76 | 39.3 | 18 | 58 | 63.6 | 87.7 | 0.83 | - | 43 | 93 |
Ramirez et al. [31] | 85 | 45.4 | 65 | 20 | 100 | 27.7 | - | 60 | 52.5 | 100 |
Malik et al. [32] | 404 | 53 | 283 | 121 | 92 | 88 | 0.9 | - | 87 | 90 |
Corpechot et al. [33] | 73 | 40.7 | 59 | 27 | 94 | 87 | 0.91 | 88 | 53 | 99 |
Miailhes et al. [34] | 59 | 43 | 49 | 10 | 92 | 94 | - | 93 | 79 | 98 |
Lee et al. [35] | 280 | 43 | 194 | 86 | 72 | 65 | 0.75 | - | 27 | 93 |
Harada et al. [36] | 56 | 63.1 | 30 | 26 | 100 | 98 | 0.99 | - | 83 | 100 |
Gara et al. [37] | 109 | 52 | 5 | 104 | 90 | 78 | 0.91 | 62 | 95 | |
Pang et al. [38] | 2052 | 51 | 1134 | 918 | 41 | 93 | - | 90 | 20 | 97 |
Dominguez et al. [39] | 80 | 56 | 26 | 64 | 88 | 98 | 0.86 | - | 88 | 98 |
Seo et al. [40] | 381 | 44.1 | 251 | 130 | 76.6 | 80.3 | 0.83 | - | - | - |
Xie et al. [41] | 160 | 52.7 | 134 | 26 | 77 | 80 | 0.83 | - | 59 | 90 |
Beckebaum et al. [42] | 157 | 52.5 | 44 | 113 | 95.8 | 75 | - | 85.4 | 94.7 | 79.3 |
Obara et al. [43] | 114 | 56 | 55 | 59 | 90 | 84 | 0.94 | - | 71 | 96 |
Endo et al. [44] | 189 | 62 | 95 | 94 | 81.5 | 86 | 0.90 | - | - | - |
Ooi et al. [45] | 35 | 22.2 | 15 | 20 | 82.5 | 33.3 | - | 61.4 | 66.7 | 57.1 |
Jin et al. [46] | 119 | 0 | 34 | 85 | 88 | 95 | - | 94 | 54 | 99 |
Chae et al. [47] | 62 | 0 | 0 | 0 | 84 | 75 | 0.82 | 79.6 | 83.3 | 73.7 |
Desmots et al. [48] | 56 | 49 | 31 | 25 | 87 | 88 | 0.90 | - | 87 | 88 |
Alam et al. [49] | 37 | 0 | 0 | 0 | 83 | 100 | - | 89 | - | - |
Lo et al. [50] | 109 | 53 | 54 | 55 | 83.3 | 64.7 | - | 68.8 | 40 | 93.2 |
Lenghel et al. [51] | 70 | 0 | 0 | 0 | 64.29 | 94 | 0.85 | 76.7 | 93.8 | 65.3 |
Chang et al. [52] | 140 | 55.3 | 2 | 138 | 60.26 | 96.77 | - | 76.4 | 95.9 | 66.4 |
Paterson et al. [53] | 48 | 67 | 38 | 10 | 83 | 96 | - | 90 | 95 | 86 |
Choi et al. [54] | 62 | 0 | 0 | 0 | 80.7 | 66.7 | - | 73.4 | 69.4 | 78.6 |
Choi et al. [55] | 15 | 0 | 0 | 0 | 91.2 | 97 | - | 94 | 96.9 | 91.4 |
Fujiwara et al. [56] | 122 | 68.4 | 94 | 28 | 72.1 | 84 | - | 79.7 | 72.1 | 84 |
Verhoeven et al. [57] | 327 | 66 | 200 | 127 | 98 | 22 | 0.77 | 58 | 54 | 91 |
Ng et al. [58] | 107 | 58 | 0 | 0 | 96 | 56.1 | 0.81 | 74.7 | 65.7 | 94.1 |
Seo et al. [59] | 54 | 0 | 0 | 0 | 76.47 | 100 | 0.88 | - | 100 | 71.43 |
Ogata et al. [60] | 20 | 0 | 0 | 0 | 92 | 100 | - | 95 | - | - |
Taylor et al. [61] | 50 | 57 | 0 | 50 | 100 | 48 | - | - | 58 | 100 |
Acu et al. [62] | 168 | 37.1 | 86 | 82 | 71.6 | 76.5 | - | 75 | - | - |
Fournier et al. [63] | 116 | 60.2 | 80 | 34 | 87 | 68 | - | - | 80 | 77 |
Korrungruang et al. [64] | 72 | 58.3 | 41 | 31 | 100 | 70.8 | 0.85 | - | 93.2 | 100 |
Larsen et al. [65] | 56 | 0 | 0 | 0 | 59 | 82 | - | 73 | 68 | 76 |
Harve et al. [66] | 61 | 0 | 0 | 0 | 65 | 62.5 | - | - | 45.8 | 78.5 |
Che et al. [67] | 81 | 46.6 | 0 | 0 | 91.1 | 83.3 | 0.93 | 87.7 | - | - |
Pehlivan et al. [68] | 23 | 56.43 | 0 | 0 | 82.4 | 84.6 | - | 83.3 | 87 | 78 |
Fang et al. [69] | 42 | 59.57 | 30 | 12 | 93.33 | 89.36 | 0.96 | 90.3 | 97.6 | 73.7 |
Sun et al. [70] | 56 | 56.07 | 32 | 24 | 88.57 | 100 | - | 94.1 | 100 | 89.2 |
Lin et al. [71] | 94 | 62.8 | 65 | 29 | 90.6 | 82.6 | - | 85.2 | 71.6 | 94.7 |
Cha et al. [72] | 52 | 36 | 28 | 24 | 93 | 100 | - | - | 100 | 85 |
Barr et al. [73] | 53 | 64.2 | 0 | 0 | 96.2 | 96.2 | - | - | 69.4 | 99.6 |
Li et al. [74] | 96 | 59 | 55 | 41 | 93 | 88.3 | - | 90.6 | 94.4 | 80 |
Suhara et al. [75] | 108 | 66 | 56 | 52 | 92.7 | 65.6 | 0.84 | 74.5 | - | - |
Rustemović et al. [76] | 149 | 63 | 73 | 76 | 100 | 95 | - | - | 92 | 100 |
Kataoka et al. [77] | 126 | 70 | 116 | 10 | 95 | 53 | - | - | 68 | 91 |
Carrara et al. [78] | 100 | 0 | 0 | 0 | 88.4 | 78.8 | 0.87 | - | 76.7 | 86.7 |
Ignes et al. [79] | 218 | 0 | 0 | 0 | 84 | 67 | - | - | 56 | 89 |
Okasha et al. [80] | 172 | 55.7 | 120 | 52 | 99 | 63 | - | 88 | 87 | 96 |
Ahmad et al. [81] | 11 | 0 | 0 | 0 | 93 | 93 | - | - | 98 | 81 |
Aghaghazvini et al. [82] | 117 | 52.98 | 56 | 61 | 90 | 77.67 | 0.91 | - | 42 | 98 |
Wang et al. [83] | 185 | 45 | 0 | 0 | 93.8 | 50 | - | 86.1 | 89.7 | 63.3 |
Azizi et al. [84] | 71 | 0 | 0 | 0 | 66.3 | 87.8 | - | - | 36.1 | 96.2 |
Wang et al. [85] | 445 | 44.1 | 0 | 0 | 94.3 | 53.3 | 0.74 | 80.5 | 79.8 | 82.8 |
Kratky et al. [86] | 61 | 50 | 14 | 47 | 67 | 89 | - | - | 78 | 83 |
Variable | Thyroid | Prostate | Liver | Soft Tissue | Lymph Node | Breast | Esophagus | Appendix | Rectum | Pancreas | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
RUE | 6 | 0 | 1 | 1 | 12 | 1 | 1 | 0 | 0 | 4 | 0.02 |
SWE | 7 | 1 | 19 | 0 | 7 | 0 | 0 | 1 | 1 | 2 | |
SE | 3 | 0 | 1 | 0 | 4 | 2 | 0 | 0 | 0 | 3 | |
SWE + SE | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Spec | 73.58 ± 22.39 | 94.60 ± 2.26 | 82.75 ± 15.98 | 33.30 ± 22.92 | 78.39 ± 19.35 | 87.82 ± 18.36 | 80.80 ± 21.50 | 93.00 ± 22.92 | 83.30 ± 2.92 | 91.36 ± 16.13 | 0.346 |
Sens | 75.08 ± 22.92 | 94.60 ± 2.26 | 82.38 ± 15.58 | 82.50 ± 22.92 | 85.26 ± 11.90 | 72.48 ± 10.79 | 87.85 ± 6.86 | 100.00 ± 32.90 | 98.00 ± 22.12 | 93.28 ± 6.91 | 0.165 |
AUC | 0.31 ± 0.21 | N/A | 0.65 ± 0.40 | N/A | 0.31 ± 0.21 | 0.29 ± 0.11 | 0.42 ± 0.30 | N/A | N/A | 0.17 ± 0.03 | >0.05 |
Acc | 41.56 ± 40.39 | N/A | 21.92 ± 19.20 | 61.40 ± 19.92 | 59.28 ± 38.16 | 49.94 ± 43.28 | 82.25 ± 10.16 | N/A | 90.60 ± 12.96 | 17.6 ± 9.35 | 0.002 |
PPV | 28.52 ± 20.56 | 83.70 ± 20.22 | 54.95 ± 32.34 | 66.70 ± 2.92 | 61.98 ± 34.12 | 88.44 ± 16.61 | 47.50 ± 27.18 | 100.00 ± 42.66 | 94.40 ± 11.95 | 75.94 ± 14.50 | 0.66 |
NPV | 55.80 ± 44.86 | 90.30 ± 13.15 | 75.89 ± 37.17 | 57.1 ± 32.34 | 70.33 ± 35.23 | 72.15 ± 6.12 | 43.00 ± 20.81 | 85.00 ± 32.34 | 80.00 ± 32.90 | 9.25 ± 5.40 | >0.05 |
Organs | Applications |
---|---|
Thyroid | Diagnostic Accuracy in Malignancy (15/78; 19.2%) |
Diagnostic Accuracy in Cystic Disease (2/78; 2.6%) | |
Liver | Diagnostic Accuracy in Liver Fibrosis (15/78; 19.2%) |
Prognosis in Liver Fibrosis (2/78; 2.6%) | |
Diagnostic Accuracy in Cirrhosis (2/78; 2.6%) | |
Diagnostic Accuracy in Primary Sclerosing Cholangitis (1/78; 1.3%) | |
Diagnostic Accuracy in Hepatocellular Carcinoma (1/78; 1.3%) | |
Lymph Node | Diagnostic Accuracy in Lymph Node Malignancy (23/78; 29.5%) |
Prostate | Diagnosis in Prostatic Malignancy (1/78; 1.3%) |
Breast | Diagnosis in Cystic Disease (2/78; 2.6%) |
Diagnosis in Breast Malignancy (1/78; 1.3%) | |
Appendix | Diagnosis in Appendicitis (1/78; 1.3%) |
Esophagus | Diagnosis of Esophagitis (1/78; 1.3%) |
Rectum | Diagnosis of Rectal Malignancy (1/78; 1.3%) |
Pancreas | Diagnosis of Pancreatic Malignancy (9/78;11.5%) |
Patellar Tendon | Diagnosis (1/78; 1.3%) |
Measures | Adjusted Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Sensitivity | 1.70 | 1.37–2.13 | 0.00 |
Specificity | 0.43 | 0.34–0.55 | 0.00 |
Accuracy | 0.66 | 0.00–0.75 | >0.05 |
Positive Predictive Value | 1.94 | 1.52–2.48 | 0.00 |
Negative Predictive Value | 3.80 | 2.95–4.90 | 0.00 |
Measures | Adjusted Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Sensitivity | 1.06 | 0.58–1.44 | 0.52 |
Specificity | 1.45 | 1.29–1.64 | 0.00 |
Accuracy | 25.15 | 24.90–25.40 | 0.00 |
Positive Predictive Value | 23.86 | 23.70–24.02 | 0.00 |
Negative Predictive Value | 24.41 | 24.27–29.36 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, N.; Ghazanfar, H.; Jyala, A.; Patel, H. Associations of Real-Time Ultrasound and Strain and Shear Wave Elastography with Gastrointestinal Organs: A Systematic Review. Diagnostics 2023, 13, 3302. https://doi.org/10.3390/diagnostics13213302
Javed N, Ghazanfar H, Jyala A, Patel H. Associations of Real-Time Ultrasound and Strain and Shear Wave Elastography with Gastrointestinal Organs: A Systematic Review. Diagnostics. 2023; 13(21):3302. https://doi.org/10.3390/diagnostics13213302
Chicago/Turabian StyleJaved, Nismat, Haider Ghazanfar, Abhilasha Jyala, and Harish Patel. 2023. "Associations of Real-Time Ultrasound and Strain and Shear Wave Elastography with Gastrointestinal Organs: A Systematic Review" Diagnostics 13, no. 21: 3302. https://doi.org/10.3390/diagnostics13213302