Life 2013, 3(4), 538-549; doi:10.3390/life3040538
Article

Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan

1 School of the Environment, Washington State University, Pullman, WA 99164, USA 2 Research Platform on ExoLife, University of Vienna, Türkenschanzstraße 17, Vienna 1180, Austria
* Author to whom correspondence should be addressed.
Received: 4 November 2013; in revised form: 6 December 2013 / Accepted: 9 December 2013 / Published: 17 December 2013
PDF Full-text Download PDF Full-Text [364 KB, uploaded 17 December 2013 14:02 CET]
Abstract: The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller’s famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller’s experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O’Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102–104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.
Keywords: prebiotic chemistry; Miller-Urey; Titan; amino acids

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Turse, C.; Leitner, J.; Firneis, M.; Schulze-Makuch, D. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan. Life 2013, 3, 538-549.

AMA Style

Turse C, Leitner J, Firneis M, Schulze-Makuch D. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan. Life. 2013; 3(4):538-549.

Chicago/Turabian Style

Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk. 2013. "Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan." Life 3, no. 4: 538-549.

Life EISSN 2075-1729 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert