Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic and MG Features of Vaccinated and Non-Vaccinated Patients
3.2. Course of SARS-CoV-2 Infection in Vaccinated and Non-Vaccinated Patients
3.3. Comparison of MG Features between Non-Vaccinated Deceased and Surviving Patients
3.4. Association between Clinical Features and the Course of COVID-19 in Vaccinated and Non-Vaccinated Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.E.; Mayer, S.A.; Gungor, Y.; Swarup, R.; Webster, E.A.; Chang, I.; Brannagan, T.H.; Fink, M.E.; Rowland, L.P. Myasthenic crisis: Clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology 1997, 48, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Gilhus, N.E.; Romi, F.; Hong, Y.; Skeie, G.O. Myasthenia gravis and infectious disease. J. Neurol. 2018, 265, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Pardasani, V.; Ramteke, K. Azithromycin-induced myasthenic crisis: Reversibility with calcium gluconate. Neurol. India 2009, 57, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Gummi, R.R.; Kukulka, N.A.; Deroche, C.B.; Govindarajan, R. Factors associated with acute exacerbations of myasthenia gravis. Muscle Nerve 2019, 60, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, W.; Bednarik, J.; Bourgeois, P.; van Hees, J.; Carton, H. Myasthenic Syndrome Caused by Direct Effect of Chloroquine on Neuromuscular Junction. Arch. Neurol. 1989, 46, 464–468. [Google Scholar] [CrossRef]
- Roy, B.; Kovvuru, S.; Nalleballe, K.; Onteddu, S.R.; Nowak, R.J. Electronic health record derived-impact of COVID-19 on myasthenia gravis. J. Neurol. Sci. 2021, 423, 117362. [Google Scholar] [CrossRef]
- Doron, A.; Piura, Y.; Vigiser, I.; Kolb, H.; Regev, K.; Nesher, N.; Karni, A. BNT162b2 mRNA COVID-19 vaccine three-dose safety and risk of COVID-19 in patients with myasthenia gravis during the alpha, delta, and omicron waves. J. Neurol. 2022, 269, 6193–6201. [Google Scholar] [CrossRef]
- Ruan, Z.; Tang, Y.; Li, C.; Sun, C.; Zhu, Y.; Li, Z.; Chang, T. COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series. Vaccines 2021, 9, 1112. [Google Scholar] [CrossRef]
- Lupica, A.; Di Stefano, V.; Iacono, S.; Pignolo, A.; Quartana, M.; Gagliardo, A.; Fierro, B.; Brighina, F. Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurol. Int. 2022, 14, 406–416. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Shen, L.; Tang, K. Response of COVID-19 vaccination in multiple sclerosis patients following disease-modifying therapies: A meta-analysis. EBioMedicine 2022, 81, 104102. [Google Scholar] [CrossRef] [PubMed]
- Jaretzki, A.; Barohn, R.; Ernstoff, R.; Kaminski, H.; Keesey, J.; Penn, A.; Sanders, D. Myasthenia gravis: Recommendations for Clinical Research Standards. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.L.; de Freitas, H.C.; Lima, P.R.O.; Junior, P.H.D.O.; Fernandes, J.M.A.; D’almeida, J.A.C.; Nóbrega, P.R. Myasthenia gravis exacerbation and myasthenic crisis associated with COVID-19: Case series and literature review. Neurol. Sci. 2022, 43, 2271–2276. [Google Scholar] [CrossRef]
- Wendell, L.C.; Levine, J.M. Myasthenic Crisis. Neurohospitalist 2011, 1, 16–22. [Google Scholar] [CrossRef]
- Jakubíková, M.; Týblová, M.; Tesař, A.; Horáková, M.; Vlažná, D.; Ryšánková, I.; Nováková, I.; Dolečková, K.; Dušek, P.; Piťha, J.; et al. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur. J. Neurol. 2021, 28, 3418–3425. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, S.; Guptill, J.T.; Jacob, S.; Li, Y.; Farrugia, M.E.; Guidon, A.C.; Tavee, J.O.; Kaminski, H.; Howard, J.F.; Cutter, G.; et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020, 19, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Solé, G.; Mathis, S.; Friedman, D.; Salort-Campana, E.; Tard, C.; Bouhour, F.; Magot, A.; Annane, D.; Clair, B.; Le Masson, G.; et al. Impact of Coronavirus Disease 2019 in a French Cohort of Myasthenia Gravis. Neurology 2021, 96, e2109–e2120. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- De Marchi, F.; Gallo, C.; Sarnelli, M.F.; De Marchi, I.; Saraceno, M.; Cantello, R.; Mazzini, L. Accelerated Early Progression of Amyotrophic Lateral Sclerosis over the COVID-19 Pandemic. Brain Sci. 2021, 11, 1291. [Google Scholar] [CrossRef]
- Esselin, F.; De La Cruz, E.; Pageot, N.; Juntas-Moralès, R.; Alphandéry, S.; Camu, W. Increased worsening of amyotrophic lateral sclerosis patients during COVID-19-related lockdown in France. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Deepak, P.; Kim, W.; Paley, M.A.; Yang, M.; Carvidi, A.B.; Demissie, E.G.; El-Qunni, A.A.; Haile, A.; Huang, K.; Kinnett, B.; et al. Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2: A Prospective Cohort Study. Ann. Intern. Med. 2021, 174, 1572–1585. [Google Scholar] [CrossRef]
- Spiera, R.; Jinich, S.; Jannat-Khah, D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS-CoV-2 vaccination in patients with rheumatic diseases. Ann. Rheum. Dis. 2021, 80, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Jyssum, I.; Kared, H.; Tran, T.T.; Tveter, A.T.; Provan, S.A.; Sexton, J.; Jørgensen, K.K.; Jahnsen, J.; Kro, G.B.; Warren, D.J.; et al. Humoral and cellular immune responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis: A prospective, cohort study. Lancet Rheumatol. 2022, 4, e177–e187. [Google Scholar] [CrossRef] [PubMed]
- Moderbacher, C.R.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 2020, 183, 996–1012.e19. [Google Scholar] [CrossRef] [PubMed]
- Gadani, S.P.; Reyes-Mantilla, M.; Jank, L.; Harris, S.; Douglas, M.; Smith, M.D.; Calabresi, P.A.; Mowry, E.M.; Fitzgerald, K.C.; Bhargava, P. Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy. Ebiomedicine 2021, 73, 103636. [Google Scholar] [CrossRef]
- Hung, Y.-P.; Lee, J.-C.; Chiu, C.-W.; Lee, C.-C.; Tsai, P.-J.; Hsu, I.-L.; Ko, W.-C. Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark? Antibiotics 2022, 11, 220. [Google Scholar] [CrossRef]
Variables | Vaccinated (n) | p Value | |
---|---|---|---|
No (13) | Yes (14) | ||
Sex M, n (%) F, n (%) | 6 (46.2%) 7 (53.8%) | 3 (21.4%) 11 (78.6%) | 0.23 |
Age, years | 68 ± 13 | 63 ± 17 | 0.56 |
Age at MG onset, years | 61 ± 19 | 55 ± 19 | 0.62 |
Age at the time of COVID-19, years | 67 ± 13 | 63 ± 18 | 0.78 |
Duration of disease, years | 6.7 ± 9.5 | 7.3 ± 6.9 | 0.37 |
BMI, n (%) <25 >25 | 6 (46.1%) 7 (53.9%) | 12 (85.7%) 2 (14.3%) | 0.04 |
Antibody status, n (%) AchR+ MuSK+ Seronegative | 13 (100%) 0 0 | 12 (85.7%) 2 (14.3%) 0 | 0.48 0.48 - |
History of thymectomy, n (%) Yes No | 4 (30.8%) 9 (69.2%) | 7 (50%) 7 (50%) | 0.44 |
Maximum MGFA Class in clinical history, n (%) <3 ≥3 | 5 (38.5%) 8 (61.6%) | 1 (7.1%) 13 (92.9%) | 0.07 |
MGFA Class at the time of COVID-19, n (%) <3 ≥3 | 11 (84.6%) 2 (15.4%) | 9 (64.3%) 5 (35.7%) | 0.38 |
Past myasthenic exacerbations, n (%) 0 ≥1 | 8 (61.5%) 5 (38.5%) | 6 (42.9%) 8 (57.1%) | 0.44 |
Comorbidities, n (%) No 1 ≥2 | 5 (38.5%) 5 (38.5%) 3 (23.0%) | 4 (28.6%) 3 (21.4%) 7 (50%) | 0.69 0.41 0.23 |
Treatment of MG at the time of COVID-19 None Pyridostigmine alone Corticosteroids Other immunomodulatory drugs Monthly IVIg | 1 (7.7%) 1 (7.7%) 7 (53.8%) 4 (30.8%) 2 (15.4%) | 1 (7.1%) 1 (7.1%) 6 (42.9%) 4 (28.6%) 5 (35.7%) | 1.00 1.00 0.70 1.00 0.38 |
Variables | Vaccinated (n) | p Value | |
---|---|---|---|
No (13) | Yes (14) | ||
Hospitalization, n (%) Yes No | 8 (61.5%) 5 (38.5%) | 1 (7.1%) 13 (92.9%) | 0.004 |
Hospitalization days (for hospitalized patients) | 14 ± 10 | 30 | - |
Severe COVID-19, n (%) Yes No | 8 (61.5%) 5 (38.5%) | 1 (7.1%) 13 (92.9%) | 0.004 |
MG crises/exacerbations during COVID-19, n (%) Yes No | 1 (7.7%) 12 (92.3%) | 2 (14.3%) 12 (85.7%) | 1.00 |
Treatment for COVID-19, n (%) None or symptomatic treatment Remdesivir Nirmatrelvir+ritonavir Antibiotics Steroids Hydroxychloroquine Anakinra | 6 (46.2%) 2 (15.4%) 0 5 (38.5%) 6 (46.2%) 1 (7.7%) 1 (7.7%) | 9 (64.3%) 0 3 (21.4%) 1 (7.1%) 1 (7.1%) 0 0 | 0.44 0.22 0.22 0.07 0.03 0.48 0.48 |
IVIg therapy during SARS-CoV-2 infection, n (%) No Yes | 11 (84.6%) 2 (15.4%) | 14 (100%) 0 | 0.22 |
Oxygen therapy/ventilatory support, n (%) No Oxygen therapy NIV ETI | 5 (38.5%) 3 (23.1%) 4 (30.8%) 1 (7.7%) | 13 (92.9%) 0 0 1 (7.1%) | 0.004 0.09 0.04 1.00 |
Exitus, n (%) Yes No | 4 (30.8%) 9 (69.2%) | 1 (7.1%) 13 (92.9%) | 0.16 |
Variable | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 |
---|---|---|---|---|---|
Age, years | 68 | 60 | 61 | 87 | 72 |
Sex | M | M | M | F | M |
Vaccination against SARS-CoV-2 | No | No | No | No | Yes |
Duration of MG, years | 3 | 8 | 4 | 2 | 4 |
Antibody status | AchR+, titin+ | AchR+ | AchR+, titin+, ryanodine+ | AchR+ | MuSK+ |
Thymectomy | No | No | No | No | No |
Thymoma | No | No | No | No | No |
Maximum MGFA in clinical history | V | IIIB | V | IIIA | V |
MGFA at the time of infection | I | II | I | IIIA | II |
MG therapy at the time of infection | Prednisone 2.5 mg, pyridostigmine | Prednisone 37.5 mg, pyridostigmine | Mycophenolate mofetil | Prednisone 20 mg, pyridostigmine | Rituximab |
Comorbidities | Overweight | Ischemic heart disease, hypertension, T2D, CKD, overweight | Hypertension, overweight | Ischemic heart disease, AF, hypertension | T2D |
Pneumonia/Sepsis | No | Sepsis | No | Pneumonia | Pneumonia and sepsis |
Hospitalization days | 2 | 15 | 4 | 13 | 30 |
MG exacerbation/crisis | No | No | No | No | Yes |
Treatment | IVIg, steroids, oxygen therapy | Remdesivir, antibiotics, LMWH, ETI | NIV | Hydroxychloroquine, steroids, antibiotics, anakinra, LMWH, NIV | Antibiotics, ETI |
Variables | Non-Vaccinated Patients (13) | Vaccinated Patients (14) | ||
---|---|---|---|---|
r | p Value | r | p Value | |
Age at MG onset | 0.63 | 0.03 | 0.06 | 0.82 |
Age at the time of COVID-19 | 0.60 | 0.04 | 0.04 | 0.89 |
Duration of disease | −0.23 | 0.44 | −0.09 | 0.74 |
Maximum MGFA Class in clinical history | 0.44 | 0.12 | 0.57 | 0.03 |
MGFA Class at the time of COVID-19 | 0.30 | 0.32 | 0.24 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarsi, E.; Massucco, S.; Ferraro, P.M.; Cella, A.; Grisanti, S.G.; Assini, A.; Beronio, A.; Della Cava, F.; Gemelli, C.; Bandini, F.; et al. Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis. Life 2023, 13, 1064. https://doi.org/10.3390/life13041064
Scarsi E, Massucco S, Ferraro PM, Cella A, Grisanti SG, Assini A, Beronio A, Della Cava F, Gemelli C, Bandini F, et al. Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis. Life. 2023; 13(4):1064. https://doi.org/10.3390/life13041064
Chicago/Turabian StyleScarsi, Elena, Sara Massucco, Pilar M. Ferraro, Arianna Cella, Stefano G. Grisanti, Andrea Assini, Alessandro Beronio, Fabio Della Cava, Chiara Gemelli, Fabio Bandini, and et al. 2023. "Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis" Life 13, no. 4: 1064. https://doi.org/10.3390/life13041064