Primary and Secondary Physiological Stress Responses of European Sea Bass (Dicentrarchus labrax) Due to Rearing Practices under Aquaculture Farming Conditions in M’diq Bay, Moroccan Mediterranean: The Case of Sampling Operation for Size and Weight Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Procedures
2.2. Biological Material and Study Site
2.3. Stress Factor: Sampling Operations
- -
- Fasting the fish 24 h before this operation;
- -
- Crowding the fish in another net on the cage surface to facilitate their fishing;
- -
- Transferring the caught fish in tanks filled with well-oxygenated seawater (4 s per scoop net);
- -
- Transporting the tanks by a speedboat to the port (less than one nautical mile away = 13 min);
- -
- Anesthesia of the fish in another bath;
- -
- Realization of morphometric measurements, namely weight and length;
- -
- Recovery of the fish in the wake-up tanks; and
- -
- Re-transportation of fish and transferring them to their own cages.
2.4. Physiological Quantification of Stress
- -
- Pre-stress state: blood was drawn from 12 fish immediately after their catch from their rearing cages;
- -
- Post-stress state: blood was drawn from 12 fish before their return to their own cages.
2.5. Experimental Study
2.6. Physiological Stress Indicators Studied
2.7. Statistical Analysis
3. Results
3.1. The Morphometric Parameters of European Sea Bass and the Physico–Chemical Parameters of Fish Farming
3.2. The Physiological Stress Response Due to the Sampling Operation in Farmed European Sea Bass
- Cortisolemia (ng/mL):
- Glycemia (mmol/L):
- Lactatemia (mmol/L):
- Cholesterolemia (mmol/L):
- Proteinemia (g/dL):
- Hematocrit percentage (%):
3.3. Statistical Analysis of the Obtained Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; La Situation Mondiale des Pêches et de l’Aquaculture (SOFIA): Rome, Italy; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/publications/card/fr/c/CA9229EN (accessed on 27 January 2022).
- Schreck, C.B.; Tort, L. The Concept of Stress in Fish. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–34. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128027288000011 (accessed on 30 September 2021).
- Kristiansen, T.S.; Fernö, A.; Pavlidis, M.A.; van de Vis, H. (Eds.) The Welfare of Fish; Animal Welfare: Cham, Switzerland; Springer International Publishing: Cham, Switzerland, 2020; Volume 20, Available online: http://link.springer.com/10.1007/978-3-030-41675-1 (accessed on 11 October 2021).
- FSBI. Briefing Paper 2, Fisheries Society of the British Isles, Granta Information Systems. In Fish Welfare; FSBI: Cambridge, UK, 2002; Volume 25. [Google Scholar]
- Santulli, A.; Modica, A.; Messina, C.; Ceffa, L.; Curatolo, A.; Rivas, G.; Fabi, G.; D’Amelio, V. Biochemical Responses of European Sea Bass (Dicentrarchus labrax L.) to the Stress Induced by Off Shore Experimental Seismic Prospecting. Mar. Pollut. Bull. 1999, 38, 1105–1114. [Google Scholar] [CrossRef]
- Sopinka, N.M.; Donaldson, M.R.; O’Connor, C.M.; Suski, C.D.; Cooke, S.J. Stress Indicators in Fish. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 405–462. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128027288000114 (accessed on 30 September 2021).
- Petitjean, Q.; Jean, S.; Gandar, A.; Côte, J.; Laffaille, P.; Jacquin, L. Stress responses in fish: From molecular to evolutionary process-es. Sci. Total Environ. 2019, 684, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, B.; Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 2019, 94, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Rotllant, J.; Ruane, N.M.; Caballero, M.J.; Montero, D.; Tort, L. Response to confinement in sea bass (Dicentrarchus labrax) is char-acterised by an increased biosynthetic capacity of interrenal tissue with no effect on ACTH sensitivity. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 136, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.H.; Park, S.J.; Jong, H.R.; Jung, J.W.; Jeon, Y.-J.; Park, S.-R.; Kim, G.-Y.; Lee, S. Involvement of the hypothalamic-pituitary-interrenal axis in the antistress activities of Tenebrio molitor Larvae in zebrafish. Appl. Anim. Behav. Sci. 2021, 244, 105487. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; López-Olmeda, J.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I.M. Cortisol and finfish welfare. Fish Physiol. Biochem. 2011, 38, 163–188. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Eliason, E.J.; Zolderdo, A.J.; Lapointe, D.; Best, C.; Gilmour, K.M.; Cooke, S.J. Cortisol modulates metabolism and energy mobilization in wild-caught pumpkinseed (Lepomis gibbosus). Fish Physiol. Biochem. 2019, 45, 1813–1828. [Google Scholar] [CrossRef] [PubMed]
- Islam, J.; Kunzmann, A.; Bögner, M.; Meyer, A.; Thiele, R.; Slater, M.J. Metabolic and molecular stress responses of European seabass, Dicentrarchus labrax at low and high temperature extremes. Ecol. Indic. 2020, 112, 106118. [Google Scholar] [CrossRef]
- Islam, J.; Slater, M.J.; Kunzmann, A. What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. Sci. Total. Environ. 2020, 749, 141458. [Google Scholar] [CrossRef]
- Aly, S.M.; Mohamed, M.F. ORIGINAL ARTICLE: Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr. 2010, 94, e31–e39. [Google Scholar] [CrossRef]
- Shourbela, R.M.; El-Hawarry, W.N.; Elfadadny, M.R.; Dawood, M.A. Oregano essential oil enhanced the growth performance, immunity, and antioxidative status of Nile tilapia (Oreochromis niloticus) reared under intensive systems. Aquaculture 2021, 542, 736868. [Google Scholar] [CrossRef]
- UE Directive. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes; Text with EEA Relevance: Brussels, Belgium; EU: Brussels, Belgium, 2017; Volume 47. [Google Scholar]
- Nhhala, H.; Chadli, H.; Er-Raioui, H. Cost and profitability analysis for a seabass production farm in Morocco. E3S Web Conf. 2022, 337, 03001. [Google Scholar] [CrossRef]
- Nhhala, H.; Bahida, A.; Nhhala, I.; Chadli, H.; Abrehouch, A.; Abdellaoui, B.; Halla, M.I.; Er-Raioui, H. Ecological risk analysis in marine fish farming: A case study of a seabass (Dicentrarchus labrax) farm located in Moroccan Mediterranean coast. E3S Web Conf. 2022, 337, 03003. [Google Scholar] [CrossRef]
- Riche, M. Analysis of refractometry for determining total plasma protein in hybrid striped bass (Morone chrysops × M. saxatilis) at various salinities. Aquaculture 2007, 264, 279–284. [Google Scholar] [CrossRef]
- Celi, M.; Filiciotto, F.; Maricchiolo, G.; Genovese, L.; Quinci, E.M.; Maccarrone, V.; Mazzola, S.; Vazzana, M.; Buscaino, G. Vessel noise pollution as a human threat to fish: Assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 2015, 42, 631–641. [Google Scholar] [CrossRef]
- Fanouraki, E.; Mylonas, C.; Papandroulakis, N.; Pavlidis, M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen. Comp. Endocrinol. 2011, 173, 313–322. [Google Scholar] [CrossRef]
- Buscaino, G.; Filiciotto, F.; Buffa, G.; Bellante, A.; Di Stefano, V.; Assenza, A.; Fazio, F.; Caola, G.; Mazzola, S. Impact of an acoustic stimulus on the motility and blood parameters of European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.). Mar. Environ. Res. 2010, 69, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Marino, D. Changes in serum cortisol, metabolites, osmotic pressure and electrolytes in response to different blood sampling procedures in cultured sea bass (Dicentrarchus labrax L.). J. Appl. Ichthyol. 2001, 17, 115–120. [Google Scholar] [CrossRef]
- Di Marco, P.; Priori, A.; Finoia, M.G.; Massari, A.; Mandich, A.; Marino, G. Physiological responses of European sea bass Dicentrar-chus labrax to different stocking densities and acute stress challenge. Aquaculture 2008, 275, 319–328. [Google Scholar] [CrossRef]
- Samaras, A.; Dimitroglou, A.; Sarropoulou, E.; Papaharisis, L.; Kottaras, L.; Pavlidis, M. Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses. Sci. Rep. 2016, 6, 34858. [Google Scholar] [CrossRef]
- Alfonso, S.; Sadoul, B.; Gesto, M.; Joassard, L.; Chatain, B.; Geffroy, B.; Bégout, M.-L. Coping styles in European sea bass: The link between boldness, stress response and neurogenesis. Physiol. Behav. 2019, 207, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, S.; Sadoul, B.; Cousin, X.; Bégout, M.L. Spatial distribution and activity patterns as welfare indicators in response to wa-ter quality changes in European sea bass, Dicentrarchus labrax. Appl. Anim. Behav. Sci. 2020, 226, 104974. [Google Scholar] [CrossRef]
- Ferrari, S.; Rey, S.; Høglund, E.; Øverli, Ø.; Chatain, B.; MacKenzie, S.; Bégout, M.-L. Physiological responses during acute stress recovery depend on stress coping style in European sea bass, Dicentrarchus labrax. Physiol. Behav. 2020, 216, 112801. [Google Scholar] [CrossRef] [PubMed]
- Goikoetxea, A.; Sadoul, B.; Blondeau-Bidet, E.; Aerts, J.; Blanc, M.-O.; Parrinello, H.; Barrachina, C.; Pratlong, M.; Geffroy, B. Genetic pathways underpinning hormonal stress responses in fish exposed to short- and long-term warm ocean temperatures. Ecol. Indic. 2020, 120, 106937. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Samaras, A.; Espírito Santo, C.; Papandroulakis, N.; Mitrizakis, N.; Pavlidis, M.; Höglund, E.; Pelgrim, T.N.M.; Zethof, J.; Spanings, F.A.T.; Vindas, M.A.; et al. Allostatic Load and Stress Physi-ology in European Seabass (Dicentrarchus labrax L.) and Gilthead Seabream (Sparus aurata L.). Front. Endocrinol. 2018, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Islam, J.; Slater, M.J.; Thiele, R.; Kunzmann, A. Influence of extreme ambient cold stress on growth, hematological, antioxidants, and immune responses in European seabass, Dicentrarchus labrax acclimatized at different salinities. Ecol. Indic. 2020, 122, 107280. [Google Scholar] [CrossRef]
- Serradell, A.; Torrecillas, S.; Makol, A.; Valdenegro, V.; Fernández-Montero, A.; Acosta, F.; Izquierdo, M.S.; Montero, D. Prebiotics and phytogenics func-tional additives in low fish meal and fish oil based diets for European sea bass (Dicentrarchus labrax): Effects on stress and immune responses. Fish Shellfish Immunol. 2020, 100, 219–229. [Google Scholar] [CrossRef]
- Varsamos, S.; Flik, G.; Pepin, J.; Bonga, S.W.; Breuil, G. Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, Dicentrarchus labrax. Fish Shellfish Immunol. 2006, 20, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Viegas, I.; Mendes, V.M.; Leston, S.; Jarak, I.; Carvalho, R.A.; Pardal, M.; Manadas, B.; Jones, J.G. Analysis of glucose metabolism in farmed European sea bass (Dicentrarchus labrax L.) using deuterated water. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 160, 341–347. [Google Scholar] [CrossRef]
- Islam, M.J.; Slater, M.J.; Bögner, M.; Zeytin, S.; Kunzmann, A. Extreme ambient temperature effects in European seabass, Dicen-trarchus labrax: Growth performance and hemato-biochemical parameters. Aquaculture 2020, 522, 735093. [Google Scholar] [CrossRef]
- Sinha, A.K.; Liew, H.J.; Diricx, M.; Blust, R.; De Boeck, G. The interactive effects of ammonia exposure, nutritional status and exer-cise on metabolic and physiological responses in gold fish (Carassius auratus L.). Aquat. Toxicol. 2012, 109, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Winkaler, E.U.; Santos, T.R.; Machado-Neto, J.G.; Martinez, C.B. Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 145, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Sancho, E.; Andreau, Ó.; Villarroel, M.J.; Fernández-Vega, C.; Tecles, F.; Martínez-Subiela, S.; Cerón, J.J.; Ferrando, M.D. European eel (Anguilla anguilla) plasma biochemistry alerts about propanil stress. J. Pestic. Sci. 2017, 42, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Islam, J.; Kunzmann, A.; Henjes, J.; Slater, M.J. Can dietary manipulation mitigate extreme warm stress in fish? The case of European seabass, Dicentrarchus labrax. Aquaculture 2021, 545, 737153. [Google Scholar] [CrossRef]
- Vargas-Lagos, C.; Martínez, D.; Muñoz, J.L.; Enríquez, R.; Morera, F.; Vargas-Chacoff, L. Immune response of Salmo salar (exotic fish) and Eleginops maclovinus (native fish) during Francisella noatunensis horizontal transference. Aquaculture 2022, 549, 737796. [Google Scholar] [CrossRef]
- Balasch, J.C.; Tort, L. Netting the Stress Responses in Fish. Front. Endocrinol. 2019, 10, 62. [Google Scholar] [CrossRef]
European Seabass | Age | Days of Stay at the Farm | Weight (g) | Length (cm) |
---|---|---|---|---|
Subadults (N = 12) | 504 days | 364 days (1 year) | 125.88 ± 21.33 (87~153) | 22.83 ± 1.39 (20~25) |
Adults (N = 12) | 878 days | 646 days (1 year and 8 months) | 338.88 ± 13.95 *** (312~363) | 31.4 ± 0.76 *** (30~33) |
European Seabass | Organosomatic Indices | ||||
---|---|---|---|---|---|
VSI | HSI | ISI | SSI | GSI | |
Subadults (N = 10) | 10.69 ± 1.28 | 1.70 ± 0.35 | 1.84 ± 0.20 | 0.05 ± 0.01 | __ |
Adults (N = 10) | 11.51 ± 1.01 * | 1.66 ± 0.13 | 1.70 ± 0.16 | 0.12 ± 0.03 *** | 0.49± 0.09 *** |
Sampling for Weight-Length Measurement | |||||||
---|---|---|---|---|---|---|---|
European Seabass | Subadult Fish (N = 24) | Adult Fish (N = 24) | p Value | ||||
Stress Indicators | Pre-Stress (N = 12) | Post-Stress (N = 12) | Pre-Stress (N = 12) | Post-Stress (N = 12) | ‘Age’ | ‘Stress -State’ | ‘Age & Stress-State’ |
Cortisolemia (ng/mL) | 115.74 ± 22.32 (88.60~151.60) | 264.54 ± 50.34 *** (173.11~341.23) | 187.34 ± 46.20 (122.72~246.86) | 320.70 ± 72.66 *** (193.87~405.00) | <0.001 | <0.001 | NS |
Glycemia (mmol/L) | 4.99 ± 1.93 (3.05~9.27) | 9.53 ± 3.25 *** (3.94~14.26) | 7.60 ± 3.20 (3.77~13.04) | 14.05 ± 4.67 ** (5.99~19.92) | <0.01 | <0.001 | NS |
Lactatemia (mmol/L) | 9.12 ± 4.55 (3.00~16.65) | 13.61 ± 3.56 * (6.88~19.43) | 10.35 ± 5.38 (1.00~20.87) | 17.65 ± 6.83 ** (5.66~29.42) | NS | <0.001 | NS |
Cholesterol (mmol/L) | 5.83 ± 1.52 (3.88~10.17) | 5.58 ± 0.82 (3.75~6.68) | 4.58 ± 0.71 (3.26~5.38) | 5.47 ± 1.39 (3.34~7.84) | NS | NS | NS |
Total protein (g/dL) | 6.25 ± 1.10 (4.50~8.10) | 4.98 ± 1.25 * (3.00~7.80) | 6.92 ± 0.65 (5.40~7.50) | 5.66 ± 0.81 *** (4.20~7.50) | <0.05 | <0.001 | NS |
Hematocrit (%) | 40.91 ± 9.46 (20.00~54.54) | 40.87 ± 13.92 (16.67~60.53) | 56.27 ± 11.09 (42.85~77.78) | 44.12 ± 14.32 * (25.00~70.33) | <0.05 | NS | NS |
European Seabass Blood Parameters (N = 48 Fish) | ||||||
---|---|---|---|---|---|---|
Cortisolemia (ng/mL) | Glycemia (mmol/L) | Lactatemia (mmol/L) | Total Cholesterol (mmol/L) | Total Protein (g/dL) | Hematocrit (%) | |
Cortisolemia (ng/mL) | − | 0.85 *** | 0.65 *** | −0.08 NS | −0.25 * | − 0.03 NS |
Glycemia (mmol/L) | − | 0.56 *** | −0.12 NS | −0.07 NS | 0.04 NS | |
Lactatemia (mmol/L) | − | − 0.12 NS | − 0.17 NS | − 0.13 NS | ||
Total Cholesterol (mmol/L) | − | − 0.06 NS | − 0.24 NS | |||
Total protein (g/dL) | − | 0.41 ** | ||||
Hematocrit (%) | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheyadmi, S.; Chadli, H.; Nhhala, H.; El Yamlahi, B.; El Maadoudi, M.; Kounnoun, A.; Cacciola, F.; Ez-Zaaim, A.; Chairi, H. Primary and Secondary Physiological Stress Responses of European Sea Bass (Dicentrarchus labrax) Due to Rearing Practices under Aquaculture Farming Conditions in M’diq Bay, Moroccan Mediterranean: The Case of Sampling Operation for Size and Weight Measurement. Life 2023, 13, 110. https://doi.org/10.3390/life13010110
Cheyadmi S, Chadli H, Nhhala H, El Yamlahi B, El Maadoudi M, Kounnoun A, Cacciola F, Ez-Zaaim A, Chairi H. Primary and Secondary Physiological Stress Responses of European Sea Bass (Dicentrarchus labrax) Due to Rearing Practices under Aquaculture Farming Conditions in M’diq Bay, Moroccan Mediterranean: The Case of Sampling Operation for Size and Weight Measurement. Life. 2023; 13(1):110. https://doi.org/10.3390/life13010110
Chicago/Turabian StyleCheyadmi, Soumaya, Housni Chadli, Hassan Nhhala, Bouchra El Yamlahi, Mohammed El Maadoudi, Ayoub Kounnoun, Francesco Cacciola, Ayoub Ez-Zaaim, and Hicham Chairi. 2023. "Primary and Secondary Physiological Stress Responses of European Sea Bass (Dicentrarchus labrax) Due to Rearing Practices under Aquaculture Farming Conditions in M’diq Bay, Moroccan Mediterranean: The Case of Sampling Operation for Size and Weight Measurement" Life 13, no. 1: 110. https://doi.org/10.3390/life13010110