Ultrasound Measurements of Rectus Femoris and Locomotor Outcomes in Patients with Spinal Cord Injury
Abstract
:1. Introduction
2. Methods
2.1. Patient Characteristics
2.2. Ultrasound Assessment
2.3. Functional Scores
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinovas-Alonso, I.; Gil-Agudo, Á.; Cano-de-la-Cuerda, R.; Del-Ama, A.J. Walking Ability Outcome Measures in Individuals with Spinal Cord Injury: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9517. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.K.; Stevens, J.E.; Gregory, C.M.; Pathare, N.C.; Jayaraman, A.; Bickel, S.C.; Bowden, M.; Behrman, A.L.; Walter, G.A.; Dudley, G.A.; et al. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 2006, 87, 772–778. [Google Scholar] [CrossRef]
- Smith, A.C.; Jakubowski, K.; Wasielewski, M.; Lee, S.S.; Elliott, J.M. Lower extremity muscle structure in incomplete spinal cord injury: A comparison between ultrasonography and magnetic resonance imaging. Spinal Cord Ser. Cases 2017, 3, 17004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.; Bunout, D.; Barrera, G.; de la Maza, M.P.; Henriquez, S.; Leiva, L.; Hirsch, S. Rectus femoris (RF) ultrasound for the assessment of muscle mass in older people. Arch. Gerontol. Geriatr. 2015, 61, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Raj, I.S.; Bird, S.R.; Shield, A.J. Reliability of ultrasonographic measurement of the architecture of the vastus lateralis and gastrocnemius medialis muscles in older adults. Clin. Physiol. Funct. Imaging 2012, 32, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Reeves, N.D.; Maganaris, C.N.; Narici, M.V. Ultrasonographic assessment of human skeletal muscle size. Eur. J. Appl. Physiol. 2004, 91, 116–118. [Google Scholar] [CrossRef]
- Nijholt, W.; Scafoglieri, A.; Jager-Wittenaar, H.; Hobbelen, J.S.M.; van der Schans, C.P. The reliability and validity of ultrasound to quantify muscles in older adults: A systematic review. J. Cachexia Sarcopenia Muscle 2017, 8, 702–712. [Google Scholar] [CrossRef]
- Nies, I.; Ackermans, L.L.G.C.; Poeze, M.; Blokhuis, T.J.; Bosch, J.T. The Diagnostic Value of Ultrasound of the Rectus Femoris for the diagnosis of Sarcopenia in adults: A systematic review. Injury 2022, in press. [Google Scholar] [CrossRef]
- Ata, A.M.; Kara, M.; Kaymak, B.; Gürçay, E.; Çakır, B.; Ünlü, H.; Akıncı, A.; Özçakar, L. Regional and total muscle mass, muscle strength and physical performance: The potential use of ultrasound imaging for sarcopenia. Arch. Gerontol. Geriatr. 2019, 83, 55–60. [Google Scholar] [CrossRef]
- English, C.; Fisher, L.; Thoirs, K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: A systematic review. Clin. Rehabil. 2012, 26, 934–944. [Google Scholar] [CrossRef]
- Trezise, J.; Blazevich, A.J. Anatomical and Neuromuscular Determinants of Strength Change in Previously Untrained Men Following Heavy Strength Training. Front. Physiol. 2019, 10, 1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oranchuk, D.J.; Hopkins, W.G.; Nelson, A.R.; Storey, A.G.; Cronin, J.B. The effect of regional quadriceps anatomical parameters on angle-specific isometric torque expression. Appl. Physiol. Nutr. Metab. 2021, 46, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Yamada, T.; Satoh, Y. Relationship between muscle echo intensity on ultrasound and isokinetic strength of the three superficial quadriceps femoris muscles in healthy young adults. J. Phys. Ther. Sci. 2021, 33, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.D.; Craven, B.C.; Thabane, L.; Laing, A.C.; Frank-Wilson, A.W.; Kontulainen, S.A.; Papaioannou, A.; Adachi, J.D.; Giangregorio, L.M. Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. J. Musculoskelet. Neuronal Interact. 2015, 15, 32–41. [Google Scholar]
- Kirshblum, S.C.; Priebe, M.M.; Ho, C.H.; Scelza, W.M.; Chiodo, A.E.; Wuermser, L.A. Spinal cord injury medicine: 3—Rehabilitation phase after acute spinal cord injury. Arch. Phys. Med. Rehabil. 2007, 88, S62–S70. [Google Scholar] [CrossRef]
- van Middendorp, J.J.; Hosman, A.J.; Donders, A.R.; Pouw, M.H.; Ditunno, J.F., Jr.; Curt, A.; Geurts, A.C.; Van de Meent, H.; EM-SCI Study Group. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: A longitudinal cohort study. Lancet 2011, 377, 1004–1010. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Nelson, A.R.; Storey, A.G.; Cronin, J.B. Variability of Regional Quadriceps Architecture in Trained Men Assessed by B-Mode and Extended-Field-of-View Ultrasonography. Int. J. Sports Physiol. Perform. 2019, 15, 430–436. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Stock, M.S.; Nelson, A.R.; Storey, A.G.; Cronin, J.B. Variability of regional quadriceps echo intensity in active young men with and without subcutaneous fat correction. Appl. Physiol. Nutr. Metab. 2020, 45, 745–752. [Google Scholar] [CrossRef]
- Arts, I.M.; Pillen, S.; Schelhaas, H.J.; Overeem, S.; Zwarts, M.J. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve 2010, 41, 32–41. [Google Scholar] [CrossRef]
- De Boer, M.D.; Seynnes, O.R.; di Prampero, P.E.; Pisot, R.; Mekjavić, I.B.; Biolo, G.; Narici, M.V. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur. J. Appl. Physiol. 2008, 104, 401–407. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, B.B.; Laughlin, J.A.; Fiedler, R.C.; Granger, C.V. Interrater reliability of the 7-level functional independence measure (FIM). Scand. J. Rehabil. Med. 1994, 26, 115–119. [Google Scholar] [PubMed]
- Dittuno, P.L.; Ditunno, J.F., Jr. Walking index for spinal cord injury (WISCI II): Scale revision. Spinal Cord 2001, 39, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singapore Med. J. 2003, 44, 614–619. [Google Scholar]
- Kim, J.M.; Tay, M.R.J.; Rajeswaran, D.K.; Tham, S.L.; Lui, W.L.; Kong, K.H. Changes in muscle architecture on ultrasound in patients early after stroke. NeuroRehabilitation 2021, 49, 565–572. [Google Scholar] [CrossRef]
- Nozoe, M.; Kanai, M.; Kubo, H.; Kobayashi, M.; Yamamoto, M.; Shimada, S.; Mase, K. Quadriceps muscle thickness changes in patients with aneurysmal subarachnoid hemorrhage during the acute phase. Top. Stroke Rehabil. 2018, 25, 209–213. [Google Scholar] [CrossRef]
- Akazawa, N.; Harada, K.; Okawa, N.; Tamura, K.; Moriyama, H. Muscle mass and intramuscular fat of the quadriceps are related to muscle strength in non-ambulatory chronic stroke survivors: A cross-sectional study. PLoS ONE 2018, 13, e0201789. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.S.; Dobrovolny, C.L.; Silver, K.H.; Smith, G.V.; Macko, R.F. Cardiovascular fitness after stroke: Role of muscle mass and gait deficit severity. J. Stroke Cerebrovasc. Dis. 2000, 9, 185–191. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Mori, N.; Kimura, M.; Ichihashi, N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012, 112, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Herrick, I.; Brown, S.; Agyapong-Badu, S.; Warner, M.; Ewings, S.; Samuel, D.; Stokes, M. Anterior Thigh Tissue Thickness Measured Using Ultrasound Imaging in Older Recreational Female Golfers and Sedentary Controls. Geriatrics 2017, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Reimers, K.; Reimers, C.; Wagner, S.; Paetzke, I.; Rer Nat, D.; Pongratz, D. Skeletal muscle sonography: A correlative study of echogenicity and morphology. J. Ultrasound Med. 1993, 2, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Ismail, C.; Zabal, J.; Hernandez, H.J.; Woletz, P.; Manning, H.; Teixeira, C.; DiPietro, L.; Blackman, M.R.; Harris-Love, M.O. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front. Physiol. 2015, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson-Webb, L.D.; Zwelling, P.J.; Pifer, A.N.; Killelea, C.M.; Faherty, M.S.; Sell, T.C.; Pastva, A.M. Point of Care Quantitative Assessment of Muscle Health in Older Individuals: An Investigation of Quantitative Muscle Ultrasound and Electrical Impedance Myography Techniques. Geriatrics 2018, 3, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rech, A.; Radaelli, R.; Goltz, F.R.; da Rosa, L.H.T.; Schneider, C.D.; Pinto, R.S. Echo Intensity is Negatively Associated with Functional Capacity in Older Women. AGE 2014, 36, 9708. [Google Scholar] [CrossRef]
- Mateos-Angulo, A.; Galán-Mercant, A.; Cuesta-Vargas, A.I. Muscle Thickness and Echo Intensity by Ultrasonography and Cognitive and Physical Dimensions in Older Adults. Diagnostics 2021, 11, 1471. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Dudley, G.A. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 2007, 45, 304–309. [Google Scholar] [CrossRef]
- Wang, J.C.; Wu, W.T.; Chang, K.V.; Chen, L.R.; Chi, S.Y.; Kara, M.; Özçakar, L. Ultrasound Imaging for the Diagnosis and Evaluation of Sarcopenia: An Umbrella Review. Life 2021, 12, 9. [Google Scholar] [CrossRef]
- Dos Santos, L.P.; do Espírito Santo, R.C.; Pena, É.; Dória, L.D.; Hax, V.; Brenol, C.V.; Monticielo, O.A.; Chakr, R.M.D.S.; Xavier, R.M. Morphological Parameters in Quadriceps Muscle Were Associated with Clinical Features and Muscle Strength of Women with Rheumatoid Arthritis: A Cross-Sectional Study. Diagnostics 2021, 11, 2014. [Google Scholar] [CrossRef]
- Leigheb, M.; de Sire, A.; Colangelo, M.; Zagaria, D.; Grassi, F.A.; Rena, O.; Conte, P.; Neri, P.; Carriero, A.; Sacchetti, G.M.; et al. Sarcopenia Diagnosis: Reliability of the Ultrasound Assessment of the Tibialis Anterior Muscle as an Alternative Evaluation Tool. Diagnostics 2021, 11, 2158. [Google Scholar] [CrossRef]
- Panisset, M.G.; Galea, M.P.; El-Ansary, D. Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord 2015, 54, 84–92. [Google Scholar] [CrossRef]
- Biering-Sørensen, B.; Kristensen, I.B.; Kjaer, M.; Biering-Sørensen, F. Muscle after spinal cord injury. Muscle Nerve 2009, 40, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R.; Hughes, V.A. Sarcopenia: Current concepts. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M716–M724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, G.E.; Park, H.E.; Kim, M.J.; Kwak, M.S.; Yang, J.I.; Chung, S.J.; Yim, J.Y.; Yoon, J.W. The Association between Low Muscle Mass and Hepatic Steatosis in Asymptomatic Population in Korea. Life 2021, 11, 848. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.R.; Lee, J.H.; Kwon, Y.J. Differences among Three Skeletal Muscle Mass Indices in Predicting Non-Alcoholic Fatty Liver Disease: Korean Nationwide Population-Based Study. Life 2021, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, F.; Walter, U.; Patejdl, R.; Endler, J.; Reuter, D.A.; Ehler, J. Sonographic Evaluation of Muscle Echogenicity for the Detection of Intensive Care Unit-Acquired Weakness: A Pilot Single-Center Prospective Cohort Study. Diagnostics 2022, 12, 1378. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Takagi, Y.; Kimura, M.; Ichihashi, N. Age-related ultrasound changes in muscle quantity and quality in women. Ultrasound Med. Biol. 2015, 41, 3013–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akazawa, N.; Harada, K.; Okawa, N.; Tamura, K.; Moriyama, H. Low body mass index negatively affects muscle mass and intramuscular fat of chronic stroke survivors. PLoS ONE 2019, 14, e0211145. [Google Scholar] [CrossRef]
- Cosenza, L.; Picelli, A.; Azzolina, D.; Minetto, M.A.; Invernizzi, M.; Bertoni, M.; Santamato, A.; Baricich, A. Rectus Femoris Characteristics in Post Stroke Spasticity: Clinical Implications from Ultrasonographic Evaluation. Toxins 2020, 12, 490. [Google Scholar] [CrossRef]
- Jandova, T.; Narici, M.V.; Steffl, M.; Bondi, D.; D’Amico, M.; Pavlu, D.; Verratti, V.; Fulle, S.; Pietrangelo, T. Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People. Life 2020, 10, 184. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Age, years, mean ± SD | 60.0 ± 16.7 |
Sex (Male: female) | 29:11 |
Ethnicity, n (%) | |
Chinese | 31 (77.5) |
Malay | 8 (20.0) |
Indian | 1 (2.5) |
Etiology, n (%) | |
Fall | 26 (65.0) |
Motor vehicle accident | 10 (25.0) |
Infectious | 1 (2.5) |
Inflammatory | 2 (5.0) |
Vascular | 1 (2.5) |
ASIA classification, n (%) | |
C | 16 (40.0) |
D | 24 (60.0) |
Height, mean ± SD | 1.65 ± 0.0904 |
Weight, mean ± SD | 62.4 ± 17.8 |
Body mass index, mean ± SD | 22.9 ± 5.52 |
Average rehabilitation stay, mean ± SD | 57.3 ± 10.2 |
Admission scores | |
LEMS, mean ± SD | 28.4 ± 17.0 |
FIM motor subscale, mean ± SD | 29.4 ± 15.0 |
FIM walk subscale, mean ± SD | 1.78 ± 1.12 |
WISCI II, mean ± SD | 4.25 ± 6.00 |
Discharge scores | |
LEMS, mean ± SD | 35.2 ± 17.3 |
FIM motor subscale, mean ± SD | 50.2 ± 25.7 |
FIM walk subscale, mean ± SD | 3.90 ± 2.19 |
WISCI II, mean ± SD | 10.2 ± 7.56 |
Rectus femoris thickness, mm | 137.3 (54.3) |
Rectus femoris echo intensity, AU | 65.7 (24.7) |
Outcome Variables | Correlation Coefficient (Spearman’s Rho) | p Value |
---|---|---|
Rectus femoris muscle thickness | ||
LEMS | 0.448 | 0.004 |
FIM motor subscale | 0.595 | <0.001 |
FIM walk subscale | 0.621 | <0.001 |
WISCI II | 0.531 | <0.001 |
Rectus femoris echo intensity | ||
LEMS | −0.345 | 0.029 |
FIM motor subscale | −0.413 | 0.008 |
FIM walk subscale | −0.352 | 0.026 |
WISCI II | −0.355 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tay, M.R.J.; Kong, K.H. Ultrasound Measurements of Rectus Femoris and Locomotor Outcomes in Patients with Spinal Cord Injury. Life 2022, 12, 1073. https://doi.org/10.3390/life12071073
Tay MRJ, Kong KH. Ultrasound Measurements of Rectus Femoris and Locomotor Outcomes in Patients with Spinal Cord Injury. Life. 2022; 12(7):1073. https://doi.org/10.3390/life12071073
Chicago/Turabian StyleTay, Matthew Rong Jie, and Keng He Kong. 2022. "Ultrasound Measurements of Rectus Femoris and Locomotor Outcomes in Patients with Spinal Cord Injury" Life 12, no. 7: 1073. https://doi.org/10.3390/life12071073