Next Article in Journal
Magnetic Resonance Imaging Features and Clinical Findings in Pediatric Idiopathic Intracranial Hypertension: A Case–Control Study
Next Article in Special Issue
In Vitro Observations of the Interactions between Pholiota carbonaria and Polytrichum commune and Its Potential Environmental Relevance
Previous Article in Journal
A Novel Assay for Phosphoserine Phosphatase Exploiting Serine Acetyltransferase as the Coupling Enzyme
Previous Article in Special Issue
Multi-Gene Phylogeny and Morphology Reveal Haplohelminthosporium gen. nov. and Helminthosporiella gen. nov. Associated with Palms in Thailand and A Checklist for Helminthosporium Reported Worldwide
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota)

by
Sirinapa Konta
1,2,3,
Kevin D. Hyde
2,
Prapassorn D. Eungwanichayapant
3,
Samantha C. Karunarathna
1,4,5,
Milan C. Samarakoon
2,
Jianchu Xu
1,4,5,
Lucas A. P. Dauner
1,
Sasith Tharanga Aluthwattha
6,7,
Saisamorn Lumyong
8,9 and
Saowaluck Tibpromma
1,4,5,*
1
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
2
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
3
School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
4
World Agroforestry Centre, East and Central Asia, Kunming 650201, China
5
Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
6
Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
7
State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
8
Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
9
Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
*
Author to whom correspondence should be addressed.
Life 2021, 11(6), 486; https://doi.org/10.3390/life11060486
Submission received: 30 March 2021 / Revised: 17 May 2021 / Accepted: 19 May 2021 / Published: 26 May 2021

Abstract

:
During our investigation of palm fungi in Thailand, two interesting taxa from Elaeis guineensis and Metroxylon sagu (Arecaceae) were collected. Based on phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 nucleotide sequences as well as unique morphological characteristics, we introduce the new genus Haploanthostomella within Xylariales, and a new species Endocalyx metroxyli. Additionally, in our study, the genus Endocalyx is transferred to the family Cainiaceae based on its brown conidia and molecular phylogenetic evidence.

1. Introduction

Palm trees represent a family of perennial lianas and consist of many diverse species worldwide, with the fossil record indicating around 65 million years of evolutionary history [1]. Microfungi on palms have been studied, but only a few have been analyzed using morphology and DNA sequence data. Several fungal species are currently unknown to science, with the total number estimated at somewhere between 2.2 and 3.8 million [2]. Thus, palms are a particularly interesting plant family for studying microfungi species unknown to science.
The subclass Xylariomycetidae has recently been updated to contain three orders (Amphisphaeriales, Delonicicolales, and Xylariales) and 35 families [3]. Recently, the family Induratiaceae was introduced in this subclass by Samarakoon et al. [4] with an updated phylogeny of Xylariales. Cainiaceae is a family of particular interest, as all members in this family tend to be found on monocotyledons, the majority of which are grasses [5]. In previous studies, Cainiaceae was accepted in the Xylariales [3,6]. Later, Hongsanan et al. [7], and Wijayawardene et al. [8] assigned Cainiaceae to the Xylariomycetidae as an incertae sedis family.
The Xylariales is one of the largest orders and includes 15 families, 160 genera, and 52 genera incertae sedis [3]. Family Cainiaceae was introduced by Krug [9] to include species of Cainia with unique apical rings in the asci that consist of a series of rings and ascospores with longitudinal germ slits. An asexual morph of Cainiaceae was coelomycetous with black, scattered, immersed pycnidial conidiomata; hyaline, denticulate, sympodially proliferating conidiophores; hyaline, filiform, branched or simple, septate conidiogenous cells with one to three phialides; and hyaline, elongate fusiform, falcate to lunate, unicellular or septate conidia, with pointed ends [10]. At present, seven genera have been accepted into this family (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora, and Seynesia) [3,11].
Since 2014, fungal research in Thailand has revealed a high diversity of novel species [12,13,14]. In this study, we found fungal species unknown to science from Thailand. The phylogeny results show that Endocalyx grouped within Cainiaceae, and so we transferred Endocalyx from Apiosporaceae (Amphisphaeriales) to Cainiaceae (Xylariales) based on both morphology and multigene phylogeny. We also introduce the new species Endocalyx metroxyli, collected from the economically important oil palm host (Elaeis guineensis). Lastly, we introduce the new genus Haploanthostomella associated with true sago palm (Metroxylon sagu).

2. Materials and Methods

2.1. Collection, Isolation, and Identification

Saprobic fungi growing on dead leaves, petioles and rachis of Elaeis guineensis and Metroxylon sagu were collected in Krabi and Surat Thani Provinces of Thailand, placed in ziplock bags and brought to the mycology laboratory at the Center of Excellence in Fungal Research, and morphological characteristics were observed. Specimens were examined following the methods provided by Konta et al. [15]. Single spore isolates were obtained following the method of Senanayake et al. [16], using malt extract agar (MEA) and incubating at 25–28 °C overnight. Germinating conidia were transferred to new MEA media and pure cultures were kept at 25–28 °C. Specimens and cultures were deposited in the herbarium of Mae Fah Luang University (MFLU) and Mae Fah Luang University Culture Collection (MFLUCC), Chiang Rai, Thailand, respectively. Faces of Fungi and Index Fungorum numbers were registered as outlined in Jayasiri et al. [17] and Index Fungorum [18].

2.2. DNA Extraction and Amplification (PCR)

Genomic DNA was extracted from fruiting bodies of Haploanthostomella elaeidis and fungal mycelium of Endocalyx metroxyli. DNA extraction and amplification were followed Dissanayake et al. [19]. Konta et al.’s method [16] was followed for PCR amplification of ITS, LSU, SSU, tef1-α and rpb2, while O’Donnell and Cigelnik’s method [20] was followed for PCR amplification of the tub2 region. Amplification was done using the primers ITS5 and ITS4 for the internal transcribed spacer regions and intervening 5.8S rDNA (ITS), the primers LR5 and LR0R for the large subunit (LSU) rRNA gene, the primer pair fRPB2-5f and fRPB2-7cR for the RNA polymerase II second largest subunit (rpb2) gene, and the primers T1 and T22 for the partial gene β-tubulin (tub2). PCR amplifications were performed using 1× PCR buffer with 8.5 μL ddH2O, 12.5 μL 2× Easy Taq PCR SuperMix (mixture of Easy Taq TM DNA Polymerase, dNTPs and optimized buffer (Beijing Trans Gen Biotech Co., Beijing, China)), 2 μL of DNA template, and 1 μL each of forward and reverse primers (10 pM) in a final volume of 25 μL. The cycle conditions in the initiation step were started at 95 °C for 3 min, followed by 35 cycles at 95 °C for 30 s, 55 °C for 50 s, 72 °C for 30 s (for ITS, LSU); 95 °C for 5 min, followed by 35 cycles at 95 °C for 1 min, 54 °C for 2 min, 72 °C for 1:5 min (for rpb2); 95 °C for 5 min, followed by 35 cycles at 94 °C for 1 min, 52 °C for 1 min, 72 °C for 1:5 min (for tub2); a final elongation step at 72 °C for 10 min and a final hold at 4 °C were done as the last steps. Purification and sequencing were performed by Sangon Biotech Co., Shanghai, China. Consensus sequences were computed using SeqMan software, and new sequences generated in this study were deposited in GenBank (Table 1).

2.3. Phylogenetic Analyses

The consensus sequences were put through a BLAST search in the NCBI GenBank nucleotide database to search for the fungal sequences of closest relatives that have been deposited in the NCBI database. Dissanayake et al.’s study [19] was followed for the phylogenetic analyses. Voglmayr and Beenken’s study [79] was used as a reference of the dataset. Both individual and combined ITS, LSU, rpb2, and tub2 nucleotide sequences were analyzed. A total of 151 taxa were used for the phylogenetic analyses in order to find the taxonomic placement of each species. Three genera viz. Delonicicola, Furfurella (Delonicicolaceae), and Leptosillia (Leptosilliaceae) in Delonicicolales were used as the outgroup taxa.
The MAFFT online program was used to obtain initial alignments for each locus [94]. Alignments were manually edited and single gene sequence data sets were combined using MEGA7 [95]. The Alignment Transformation Environment online program was used to convert the file format [96]. MrModeltest [97] was used to find the best model for maximum likelihood (ML) and Bayesian analyses (BYPP). The six simultaneous Markov chains were run for 20,000,000 generations and trees were sampled every 1000th generation. Bayesian posterior probabilities from MCMC were evaluated with a final average standard deviation of the split frequency of <0.01. Bootstrap values for ML equal to or greater than 50% and BYPP equal to or greater than 0.90 are given at the nodes (Figure 1). Fig Tree v1.4.0 was used to configure the phylogenetic trees [98] and edited using Microsoft Office PowerPoint 2010 and Adobe Photoshop CS6 (Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA, USA).

3. Results

3.1. Morphology and Phylogeny

The combined dataset comprised 151 taxa from selected taxa in Amphisphaeriales, Delonicicolales, and Xylariales (Table 1). The RAxML analyses of the combined dataset yielded the best-scoring tree (Figure 1) with a final ML optimization likelihood value of −126584.196783. The matrix had 4598 distinct alignment patterns, with 65.07% undetermined characters or gaps. Estimated base frequencies were: A = 0.243574, C = 0.257762, G = 0.258457, T = 0.240207; substitution rates AC = 1.296272, AG = 3.089851, AT = 1.400263, CG = 1.060328, CT = 9.900102, GT = 1.000000; gamma distribution shape parameter α = 0.443932. Tree-Length = 25.372161. Bayesian analysis resulted in a tree with similar topology and clades as the ML tree. Phylogenetic analyses of the combined ITS, LSU, rpb2, and tub2 loci show two novel taxa within the monospecific genus Haploanthostomella (type species Haploanthostomella elaeidis; Xylariales incertae sedis) and the novel taxa Endocalyx metroxyli, with the genus Endocalyx being placed in Cainiaceae.

3.1.1. Haploanthostomella Konta & K.D. Hyde. gen. nov.

Index Fungorum number: IF557876; Facesoffungi number: FoF09173
Etymology: “haplos” (απλός) in Greek means single; Anthostomella refers to its morphological similarity to Anthostomella.
Saprobic on dead leaves and rachis in terrestrial habitats. Sexual morph: Ascomata immersed in the host epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. Peridial wall thick, comprised of several layers of cells, outwardly comprising dark brown cells of textura prismatica and inwardly comprising hyaline cells of textura angularis. Paraphyses septate, tapering hyphae-like, hyaline. Asci eight-spored, unitunicate, clavate to cylindric, short pedicellate, with J-, apical ring. Ascospores uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline or brown to dark brown, verrucose with a mucilaginous cap at apex. Germ slit straight, less than spore-length. Asexual morph: Not observed.
Type species: Haploanthostomella elaeidis Konta & K.D. Hyde.
Notes: Anthostomella species were proven to be polyphyletic, and it is of no surprise that a new genus with anthostomella-like characteristics was discovered in this study [99]. Phylogenetic analyses based on a single dataset of ITS (supporting information section) and combined sequence data indicated that Haploanthostomella belongs to Xylariales genera incertae sedis, separating well from other genera but with low bootstrap values (Figure 1). According to the phylogenetic tree (Figure 1), seven genera (Ceratocladium, Circinotrichum, Gyrothrix, Idriella, Neoanthostomella, Virgaria and Xenoanthostomella) are closely related to our new genus, but morphological characteristics of these genera are different. The genera Neoanthostomella, Virgaria, and Xenoanthostomella were compared morphologically since they are similar to our new taxon. Haploanthostomella differs from Virgaria, Neoanthostomella, and Xenoanthostomella in having a J- apical ring, fusoid-obovoid ascospores, and verrucose with a mucilaginous cap at the apex, while Virgaria has asci with a J+ apical ring and smooth-walled elliposidal ascospores lacking of a mucilaginous sheath; Neoanthostomella smooth-walled elliposidal ascospores surrounded by a thick mucilaginous sheath; Xenoanthostomella has unilocular ascoma, and ascospores lacking germ slits and mucilaginous sheaths [13,72,89]. Therefore, Haploanthostomella is described here as a new genus based on phylogeny coupled with morphology. In addition, we provide a key to genera with Anthostomella-like characteristics.

3.1.2. Haploanthostomella elaeidis Konta & K.D. Hyde., sp. nov.

Index Fungorum number: IF557877, Facesoffungi number: FoF09174 (Figure 2)
Etymology: Referring to the genus of palm trees Elaeis Jacq.
Holotype: MFLU 20-0522.
Saprobic on dead leaves and rachis of Elaeis guineensis. Sexual morph: Ascomata 160–280 × 130–350 μm ( = 220 × 240 μm, n = 20), immersed in the host epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. Peridial wall 13–45 μm wide, thick, comprising several layers of cells, outwardly comprising dark brown cells of textura irregularis and inwardly comprising hyaline cells of textura prismatica, 7–20 μm wide. Paraphyses 1.5–4.5 μm wide, septate, hyphae-like, hyaline. Asci 50–90 × 10–15 μm ( = 70 × 12 μm, n = 40), 8-spored, unitunicate, clavate to cylindric, short pedicellate, with J- apical ring. Ascospores 10–18 × 5–8 μm ( = 14 × 6 μm, n = 100), uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline to light brown when immature and brown to dark brown when mature, mostly one, rarely two-guttulate, cell wall verrucose, with a mucilaginous cap at the apex. Germslit 3–6 μm length ( = 5 μm, n = 50), straight, less than spore-length. Asexual morph: Not observed.
Material examined: THAILAND, Surat Thani Province, on dead leaves and rachis of Elaeis guineensis Jacq. (Arecaceae) on the ground, 21 July 2017, Sirinapa Konta, SRWD12 (MFLU 20-0522, holotype).
Notes: A BLAST search of H. elaeidis ITS sequence shows 83.87% similarity with Gyrothrix oleae (CPC 37069); LSU sequence shows 95.95% similarity with Gyrothrix eucalypti (CPC 36066); and rpb2 sequence shows 80.95% similarity with Lopadostoma meridionale (LG). Only the sexual morph of H. elaeidis was found in nature, and we could not obtain a pure culture from fresh samples. Therefore, the morphological characteristics of H. elaeidis were not compared with Ceratocladium, Circinotrichum, Gyrothrix, and Idriella, as they only had asexual morphs found in nature. Hence, the morphological features of H. elaeidis were only compared with Neoanthostomella, Virgaria, and Xenoanthostomella, as they have sexual morphs.
Key to genera related to Anthostomella-like genera
1. Hyaline ascosporesAlloanthostomella
1. Brown ascospores2
2. Asci with a J- apical ring3
2. Asci with or without J+ apical ring5
3. Ascospores with or without germ slit4
3. Ascospores with germ slitXenoanthostomella
4. Ascospores with a germ slit and the length less than spore length with a mucilaginous cap at the apexHaploanthostomella
4. Ascospores with or without germ slit, with mucilaginous sheathNeoanthostomella
5. Asci with a J+ apical ring, ascospores with germ slit, with or without mucilaginous sheath6
5. Asci with J+ or J- apical ring, ascospores with or without germ slit (straight or spiral), and also with or without appendages or mucilaginous sheathAnthostomella
6. Ascospores with germ slit less than spore length, with or without mucilaginous sheath7
6. Ascospores with germ slit extending over full length with mucilaginous sheathPseudoanthostomella
7. Ellipsoid ascospores without mucilaginous sheathVirgaria
7. Inequilaterally oblong-ellipsoidal ascospores with mucilaginous sheathAnthostomelloides

3.1.3. Endocalyx Berk. & Broome, J. Linn. Soc., Bot. 15(1): 84 (1876) [1877]

Index Fungorum number: IF8158; Facesoffungi number: FoF09175
Saprobic on various plants. Colonies on host plant, pustules nearly flat or raised, circular, discolored, dark brown to black, at last bursting, the conidiomata developing. Sexual morph: Undetermined. Asexual morph: Conidiomata scattered, erect, cupulate to cylindrical; peridial hyphae enclosing the inner conidial mass, nonsporiferous, brown to yellowish brown; some species consisting of two parts of conidioma: (1) a basal cylinder covering a central column, rough-walled, carbonaceous, composed of black hyphae which are sometimes branched and are adherent to one another; (2) a slender central column, synnematous, expanding radially apically, high, enclosed by the peridial hyphae which are nonsporiferous, orange-yellow to lemon-yellow. Peridial wall thick, comprising dark brown, thick-walled cells of textura angularis. Conidiophores thread-like, septate, with or without short pegs bearing the conidia, meristematic at the base, colorless basally and gradually turning brown apically, 1–2 µm wide; peridium thick, comprising dark brown, thick-walled cells of textura angularis. Conidiogenous cells holoblastic, integrated, determinate. Conidia solitary, unicellular, flattened, round, oval or slightly polygonal in face view, at first pale, dark brown to fuscous black at maturity, with or without guttules, often with a longitudinal hyaline straight germ slit extending the full-length (adapted from [99,100,101]).
Type species: Endocalyx thwaitesii Berk. & Broome
Notes: Endocalyx is a coelomycetous genus in Cainiaceae with E. cinctus collected from Japan E. metroxyli sp. nov. collected from Thailand. Phylogenetic analyses of a single dataset of ITS (supporting information section) and phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 regions (Figure 1) confirm the placement of Endocalyx within Cainiaceae. ITS analyses showed that Endocalyx is closely related to Amphibambusa and Atrotorquata (supporting information section), while Figure 1 shows that Endocalyx formed a basal clade to other cainiaceous genera (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora, and Seynesia) with high bootstrap support. Morphologically, Endocalyx has been revised and described only as an asexual morph of the genus [100,101], while all genera in Cainiaceae have been described in their sexual morphs, except the type genus Cainia, for which both asexual and sexual morphs have been described. We could not compare the morphology of Endocalyx to Arecophila, Seynesia, and Amphibambusa (sister species in Figure 1). Therefore, Cainia was used for morphological comparisons; Endocalyx differs from Cainia in having erect conidiomata and also the ostiole opening surrounded by yellow hyphae, ellipsoid-globose conidia, unicellular with brown to dark brown color, and a germ slit. Cainia has immersed conidiomata, conidiogenous cells with one to three phialides, and elongate fusiform conidia, unicellular or septate, hyaline, with pointed ends [100,101,102].
Recently, Longiappendispora was introduced under Cainiaceae, with seven genera in total included in the family by Mapook et al. [11]. In our study, detailed molecular analyses were done for Endocalyx and its placement in Cainiaceae (Xyalriales) was confirmed. Previously, Endocalyx was classified in Apiosporaceae (Xylariales, Sordariomycetes) based on morphological evidence. As the first detailed molecular data of Endocalyx cinctus have been made available from a Japan laboratory [32], their current placement is supported (Figure 1). However, there are no recent publications referring to the molecular data of this genus yet. Thus, in this study, we present the placement of Endocalyx based on multigene phylogenetic analyses with recent sequence data from the Japan collection as well as the Thailand collection. In addition, we accept eight genera in Cainiaceae (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Endocalyx, Longiappendispora, and Seynesia), and seven species by including our new species in the genus Endocalyx (Table 2). In addition, we provide a key for the members of Cainiaceae.

3.1.4. Endocalyx metroxyli Konta & K.D. Hyde. sp. nov.

Index Fungorum number: IF558116, Facesoffungi number: FoF09176 (Figure 3)
Etymology: Refers to the name of the host genus, Metroxylon.
Holotype: MFLU 15-1454.
Saprobic on dead petiole of Metroxylon sagu. Colonies on host plant, pustules. Sexual morph: Undetermined. Asexual morph: Conidiomata 340–660 μm wide, in vertical section 495–820 × 325–485 µm, acervulus, solitary, semi-immersed to immersed in the host epidermis, beneath a clypeus, visible as slightly raised and blackened, black, carbonaceous, fragile, with an ostiolar canal. Ostiolar opening surrounded by a yellow margin. Peridial wall 34–80 μm wide, thick, comprising dark brown cells of textura angularis. Conidiomata not observed with a basal cylinder covering a central column or a slender central column in our collection. Conidiophores reduced to conidiogenous cell, hyaline to pale-brown, unbranched, smooth. Conidia 13–16 × 7–10 µm ( = 13 × 10 µm, n = 30), unicellular, ellipsoid-globose, brown to dark brown, with short pegs bearing conidia, with germ slit, smooth-walled.
Culture characteristics: Colonies on MEA, at first white, raised, effuse, velvety to hairy, circular, smooth at the margin, white from above, pale-brown from below.
Material examined: Thailand, Krabi Province, on dead petiole of Metroxylon sagu Rottb. on the ground (Arecaceae), 8 December 2014, Sirinapa Konta KBR04h2 (MFLU 15-1454, holotype); ex-type living culture, MFLUCC 15-0723A; ibid. MFLUCC 15-0723B, MFLUCC 15-0723C.
Additional sequence data: SSU: MT929310, MT929311, tef1-α: MT928152, MT928153.
Notes: Endocalyx metroxyli is phylogenetically well supported and is placed in Cainiaceae (Figure 1). Endocalyx metroxyli is closely related to E. cinctus with high bootstrap support but is distinct in morphological characteristics. A BLAST search of E. metroxyli ITS sequence shows 83.10% similarity with Requienella seminuda (CBS 140502) (CPC 37069), LSU sequence shows 96.14% similarity with Entosordaria quercina (RQ), tub2 sequence shows 88.94% similarity with Daldinia dennisii var. dennisii, SSU sequence shows 97.92% similarity with Xenoanthostomella chromolaenae (MFLUCC 17-1484), and tef1-α sequence shows 89.39% similarity with Barrmaelia macrospor (BM).
Endocalyx metroxyli is morphologically similar to E. melanoxanthus. However, Endocalyx metroxyli does not have erect conidiomata developing from the pustules, as was mentioned by Petch [100], Okada and Tubaki [101], and Vitoria et al. [102,131]. In this study, we found only a black raised pustule structure with ostiole surrounded by a yellow hyphae ring, and hyaline conidiophore, unicellular, dark brown conidia with a longitudinal germ slit. Endocalyx melanoxanthus was collected and described from palm hosts (Arecaceae), and a few collections were collected from other host plants (Table 2). According to Species Fungorum [134], E. melanoxanthus var. Grossus (G. Okada & Tubaki) and E. melanoxanthus var. melanoxanthus (Berk. & Broome) are considered as E. melanoxanthus, even though they have several different characteristics.
Endocalyx metroxyli is morphologically similar to E. melanoxanthus var. melanoxanthus, in having black raised pustules surrounded by yellow hyphae and smooth-walled conidia with no significant size differences [100,101,102]. However, our new taxon lacks cupulate or cylindrical conidiomata [101,102]. On the other hand, E. metroxyli differs from E. melanoxanthus var. grossus by lacking the production of ornamented conidia [100,101].
Keys to genera of Cainiaceae
1. Asexual morph
1.1 Coelomycetous; 1–3 phialides conidiogenous cells, and elongate fusiform conidia with unicellular or septate, with pointed endsCainia
1.1 Coelomycetous; conidiomata with ostiolar opening surrounded by yellow, with unicellular conidia, ellipsoid-globose, pale to dark brown to black, with a straight germ slit extending the full-lengthEndocalyx
2. Sexual morph
2.1 Cylindrical-clavate asci, ascospores with 1-septate(2.2)
2.1 Cylindrical, or cylindrical to elongate cylindrical asci, ascospores with 1-septate(2.3)
2.2 Ellipsoidal ascospores, with brown, and sheathCainia
2.2 Ellipsoidal to fusiform ascospores, with brown, and sheathAtrotorquata
2.3 Ellipsoid to broadly fusiform ascospores, longitudinal striations, bristle-like polar appendages from both ends, without a gelatinous sheathLongiappendispora
2.3 Fusiform to broad-fusiform ascospores with pointed at both ends, striation wall, and sheathAmphibambusa
2.3 Ellipsoidal or oblong ascospores(2.4)
2.4 Oblong ascospores with cap-like appendage, germ slitsSeynesia
2.4 Ellipsoidal ascospores(2.5)
2.5 Ascospores with striation wall, brown, and sheathAlishanica
2.5 Ascospores with striate or verrucose wall, and subhyaline to brownArecophila

4. Discussion

Based on phylogeny and morphological characteristics, the new monotypic genus Haploanthostomella (type species: Haploanthostomella elaeidis) and the new species Endocalyx metroxyli have been established. The former new species was isolated from a dead rachis of Elaeis guineensis, and the latter from a dead petiole of Metroxylon sagu (Arecaceae) in Thailand. Phylogenetic analyses of combined datasets together with morphological characteristics revealed that Haploanthostomella belongs to Xylariales incertae sedis, while Endocalyx belongs to the Cainiaceae (Xylariales).
Based on morphological features, Endocalyx was assigned to Apiosporaceae (Amphisphaeriales, Sordariomycetes), together with four other genera, viz. Appendicospora, Arthrinium, Dictyoarthrinium, and Nigrospora [3,8]. Later, Dictyoarthrinium was transferred to Didymosphaeriaceae (Pleosporales, Dothideomycetes) [135]. According to our phylogenetic analyses (Figure 1), Arthrinium and Nigrospora should be accepted under the Apiosporaceae, while Appendicospora did not clade to this family (supporting information section), and Endocalyx fits well within the Cainiaceae.
Interestingly, four out of seven species in the genus Endocalyx (E. melanoxanthus, E. cinctus, E. indumentum, and E. thwaitesii) were collected from palm hosts (Table 2). Endocalyx metroxyli is similar to other species by having dark brown conidia with a full-length germ slit, it but differs from other species by not having conidiomata produced from the pustulate and no thread-like structure of conidiophores. Morphological characteristics of species in the genus are mostly flat or raised pustules, capsule or slender conidiomata with or without branches at the apex, and brown to dark brown conidia with smooth walls (E. amarkantakensis, E. collantesis, E. indumentum, E. melanoxanthus, E. melanoxanthus var. melanoxanthus), while some species are verrucose-walled (E. cinctus, E. indumentum, E. melanoxanthus var. grossus, E. thwaitesii). We referred to previous publications for morphological comparisons to the taxa in this study, as we did not observe all holotype specimens [100,101,102].
According to the literature, there are also strains derived from another two species and two varieties. Excluding E. cinctus, no sequence data are available for generic types of Endocalyx and other species, and their morphology and host substrates are closely related to our novel taxon. Endocalyx species have been reported in several countries, especially in tropical and subtropical regions. Furthermore, palm trees (Arecaceae) have most commonly been reported as the host, while several species have been presented from other hosts (Table 2).
The phylogenetic placement of many groups within the Xylariales remains unclear (e.g., Anthostomelloides, Calceomyces, Circinotrichum, Fasciatispora (only F. petrakii), Gyrothyrix, Melanographium, Neoanthostomella, Pseudoanthostomella, and Xenoanthostomella, Figure 1). Thus, it is necessary to collect and analyze more fungal specimens from Xylariales using multigene phylogeny (with protein coding genes) and morphology to resolve their taxonomical placement and delimitation.

Author Contributions

Conceptualization, S.K.; Formal analysis, S.K.; Funding acquisition, K.D.H. and S.T.; Methodology, S.K.; Resources, S.C.K., J.X. and S.T.; Supervision, K.D.H. and P.D.E.; Writing—original draft, S.K., S.C.K., M.C.S., S.T.A., L.A.P.D. and S.T.; Writing—review and editing, K.D.H., S.C.K., S.T. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding

Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation, and the Yunnan Human Resources, and Social Security Department Foundation for funding her postdoctoral research. Samantha C. Kaunarathna thanks CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (No. 2018PC0006) and the National Science Foundation of China (NSFC) for funding this work under the project code 31851110759. Kevin D. Hyde thanks the Thailand Research Funds for the grant “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion (RDG6130001)”. This work was partly supported by Chiang Mai University.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Sirinapa Konta is grateful to Paul Kirk, Shaun Pennycook, Saranyaphat Boonmee, and Sirilak Radbouchoom for their valuable suggestions and help.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lewis, C.E.; Baker, W.J.; Asmussen, C.B. DNA and palm evolution. Palms 2000, 44, 19–24. [Google Scholar]
  2. Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Fungal Kingd. 2017, 4, 79–95. [Google Scholar] [CrossRef]
  3. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
  4. Samarakoon, M.C.; Thongbai, B.; Hyde, K.D.; Brönstrup, M.; Beutling, U.; Lambert, C.; Miller, A.N.; Liu, J.K.J.; Promputtha, I.; Stadler, M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer into the genus Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. Fungal Divers. 2020, 101, 177–210. [Google Scholar] [CrossRef]
  5. Senanayake, I.C.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Bhat, J.D.; Jones, E.B.G.; McKenzie, E.H.C.; Dai, D.Q.; Daranagama, D.A.; Dayarathne, M.C.; Goonasekara, I.D.; et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers. 2015, 73, 73–144. [Google Scholar] [CrossRef]
  6. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.G.; McKenzie, E.H.; Huang, S.K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D’souza, M.J.; Goonasekara, I.D.; et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015, 72, 199–301. [Google Scholar] [CrossRef]
  7. Hongsanan, S.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Samarakoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.M.; Bahkali, A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017, 84, 25–41. [Google Scholar] [CrossRef]
  8. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
  9. Krug, J.C. The genus Cainia and a new family, Cainiaceae. Sydowia 1978, 30, 122–133. [Google Scholar]
  10. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.G.; McKenzie, E.H.C.; Bhat, J.D.; Dayarathne, M.C.; Huang, S.K.; Norphanphoun, C.; Senanayake, I.C.; Perera, R.H.; et al. Families of Sordariomycetes. Fungal Divers. 2016, 79, 1–317. [Google Scholar] [CrossRef]
  11. Mapook, A.; Hyde, K.D.; McKenzie, E.H.; Jones, E.G.; Bhat, D.J.; Jeewon, R.; Stadler, M.; Samarakoon, M.C.; Malaithong, M.; Tanunchai, B.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Divers. 2020, 101, 1–175. [Google Scholar] [CrossRef]
  12. Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity—Up to 96% of fungi in northern Thailand are novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
  13. Hyde, K.D.; Dong, Y.; Phookamsak, R.; Jeewon, R.; Bhat, D.J.; Jones, E.B.; Liu, N.G.; Abeywickrama, P.D.; Mapook, A.; Wei, D.P.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020, 100, 5–277. [Google Scholar] [CrossRef] [Green Version]
  14. Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Bhunjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norphanphoun, C.; Sysouphanthong, P.; Pem, D.; et al. The numbers of fungi: Is the descriptive curve flattening? Fungal Divers. 2020, 103, 219–271. [Google Scholar] [CrossRef]
  15. Konta, S.; Hyde, K.D.; Eungwanichayapant, P.D.; Doilom, M.; Tennakoon, D.S.; Senwanna, C.; Boonmee, S. Fissuroma (Aigialaceae: Pleosporales) appears to be hyperdiverse on Arecaceae: Evidence from two new species from southern Thailand. Acta Bot. Bras. 2020, 34, 384–393. [Google Scholar] [CrossRef]
  16. Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Pem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. MYCOSP 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
  17. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Divers. 2015, 74, 3–18. [Google Scholar] [CrossRef]
  18. Index Fungorum. 2021. Available online: http://www.indexfungorum.org/names/Names.asp (accessed on 30 April 2020).
  19. Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [Google Scholar] [CrossRef]
  20. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within amonophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
  21. Pintos, Á.; Alvarado, P.; Planas, J.; Jarling, R. Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts. MycoKeys 2019, 49, 15–48. [Google Scholar] [CrossRef] [Green Version]
  22. Crous, P.W.; Groenewald, J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus 2013, 4, 133–154. [Google Scholar] [CrossRef] [Green Version]
  23. Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Pers. Mol. Phylogeny Evol. Fungi 2017, 39, 118–142. [Google Scholar] [CrossRef] [PubMed]
  24. Crous, P.W.; Schumacher, R.K.; Akulov, A.; Thangavel, R.; Hernández-Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfield, M.J.; Summerell, B.A.; Quaedvlieg, W.; et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019, 3, 57–134. [Google Scholar] [CrossRef] [PubMed]
  25. Liu, F.; Bonthond, G.; Groenewald, J.Z.; Cai, L.; Crous, P.W. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud. Mycol. 2019, 92, 287–415. [Google Scholar] [CrossRef] [PubMed]
  26. Crous, P.W.; Shivas, R.G.; Quaedvlieg, W.; van der Bank, M.; Zhang, Y.; Summerell, B.A.; Guarro, J.; Wingfield, M.J.; Wood, A.R.; Alfenas, A.C.; et al. Fungal Planet description sheets: 214–280. Pers. Mol. Phylogeny Evol. Fungi 2014, 32, 184–306. [Google Scholar] [CrossRef] [PubMed]
  27. Jeewon, R.; Liew, E.C.; Hyde, K.D. Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycol. Res. 2003, 107, 1392–1402. [Google Scholar] [CrossRef]
  28. Liu, J.K.; Hyde, K.D.; Jones, E.G.; Ariyawansa, H.A.; Bhat, D.J.; Boonmee, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015, 72, 1–197. [Google Scholar] [CrossRef]
  29. Jaklitsch, W.M.; Gardiennet, A.; Voglmayr, H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Pers. Mol. Phylogeny Evol. Fungi 2016, 37, 82–105. [Google Scholar] [CrossRef] [Green Version]
  30. Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.; Liu, J.K.; Bhat, D.J.; Jones, E.G.; McKenzie, E.H.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017, 83, 1–261. [Google Scholar] [CrossRef]
  31. Lumbsch, H.T.; Schmitt, I.; Lindemuth, R.; Miller, A.; Mangold, A.; Fernandez, F.; Huhndorf, S. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). Mol. Phylogenet. Evol. 2005, 34, 512–524. [Google Scholar] [CrossRef]
  32. Okada, G.; Iida, T.; Ohkuma, M. The DNA Bank, RIKEN Bio Resource Research Center, Japan, 2017. Available online: https://www.jcm.riken.jp/cgi-bin/jcm/jcm_number?JCM=7946 (accessed on 30 April 2020).
  33. Bhattacharya, D.; Lutzoni, F.; Reeb, V.; Simon, D.; Nason, J.; Fernandez, F. Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol. Biol. Evol. 2000, 17, 1971–1984. [Google Scholar] [CrossRef]
  34. Voglmayr, H.; Friebes, G.; Gardiennet, A.; Jaklitsch, W.M. Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on Anthostomella-like genera based on multigene phylogenies. Mycol. Prog. 2018, 17, 155–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Asgari, B.; Zare, R. A contribution to the taxonomy of the genus Coniocessia (Xylariales). Mycol. Prog. 2011, 10, 189–206. [Google Scholar] [CrossRef]
  36. García, D.; Stchigel, A.M.; Cano, J.; Calduch, M.; Hawksworth, D.L.; Guarro, J. Molecular phylogeny of Coniochaetales. Mycol. Res. 2006, 110, 1271–1289. [Google Scholar] [CrossRef] [PubMed]
  37. Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Jones, E.G.; Tibpromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018, 89, 1–236. [Google Scholar] [CrossRef]
  38. Senwanna, C.; Phookamsak, R.; Doilom, M.; Hyde, K.D.; Cheewangkoon, R. Novel taxa of Diatrypaceae from Para rubber (Hevea brasiliensis) in northern Thailand; introducing a novel genus Allocryptovalsa. Mycosphere 2017, 8, 1835–1855. [Google Scholar] [CrossRef]
  39. Konta, S.; Maharachchikumbura, S.S.N.; Senanayake, I.C.; McKenzie, E.H.C.; Stadler, M.; Boonmee, S.; Phookamsak, R.; Jayawardena, R.S.; Senwanna, C.; Hyde, K.D.; et al. A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae). Mycosphere 2020, 11, 239–268. [Google Scholar] [CrossRef]
  40. Jaklitsch, W.M.; Fournier, J.; Rogers, J.D.; Voglmayr, H. Phylogenetic and taxonomic revision of Lopadostoma. Pers. Mol. Phylogeny Evol. Fungi 2014, 32, 52–82. [Google Scholar] [CrossRef] [Green Version]
  41. Spatafora, J.W.; Sung, G.H.; Johnson, D.; Hesse, C.; O’Rourke, B.; Serdani, M.; Spotts, R.; Lutzoni, F.; Hofstetter, V.; Miadlikowska, J.; et al. A five-gene phylogeny of Pezizomycotina. Mycologia 2006, 98, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
  42. Lynch, S.C.; Eskalen, A.; Zambino, P.J.; Mayorquin, J.S.; Wang, D.H. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Mycologia 2013, 105, 125–140. [Google Scholar] [CrossRef]
  43. Rolshausen, P.E.; Mahoney, N.E.; Molyneux, R.J.; Gubler, W.D. A reassessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 2006, 96, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Vu, D.; Groenewald, M.; De Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef] [PubMed]
  45. Acero, F.J.; González, V.; Sánchez-Ballesteros, J.; Rubio, V.; Checa, J.; Bills, G.F.; Salazar, O.; Platas, G.; Peláez, F. Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia 2004, 96, 249–259. [Google Scholar] [CrossRef] [PubMed]
  46. Dayarathne, M.C.; Phookamsak, R.; Hyde, K.D.; Manawasinghe, I.S.; To-Anun, C.; Jones, G.E. Halodiatrype, a novel diatrypaceous genus from mangroves with H. salinicola and H. avicenniae spp. nov. Mycosphere 2016, 7, 612–627. [Google Scholar] [CrossRef]
  47. Klaysuban, A.; Sakayaroj, J.; Jones, E.G. An additional marine fungal lineage in the Diatrypaceae, Xylariales: Pedumispora rhizophorae. Bot. Mar. 2014, 57, 413–420. [Google Scholar] [CrossRef]
  48. Hyde, K.D.; Tennakoon, D.S.; Jeewon, R.; Bhat, D.J.; Maharachchikumbura, S.S.N.; Rossi, W.; Leonardi, M.; Lee, H.B.; Mun, H.Y.; Houbraken, J.; et al. Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2019, 96, 1–242. [Google Scholar] [CrossRef]
  49. Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Chethana, K.T.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
  50. Wendt, L.; Sir, E.B.; Kuhnert, E.; Heitkämper, S.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Luangsa-Ard, J.J.; Srikitikulchai, P.; Peršoh, D.; et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018, 17, 115–154. [Google Scholar] [CrossRef] [Green Version]
  51. Zhang, N.; Castlebury, L.A.; Miller, A.N.; Huhndorf, S.M.; Schoch, C.L.; Seifert, K.A.; Rossman, A.Y.; Rogers, J.D.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006, 98, 1076–1087. [Google Scholar] [CrossRef]
  52. Stadler, M.; Læssøe, T.; Fournier, J.; Decock, C.; Schmieschek, B.; Tichy, H.V.; Peršoh, D. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud. Mycol. 2014, 77, 1–143. [Google Scholar] [CrossRef] [Green Version]
  53. Koukol, O.; Kelnarová, I.; Černý, K. Recent observations of sooty bark disease of sycamore maple in Prague (Czech Republic) and the phylogenetic placement of Cryptostroma corticale. For. Pathol. 2015, 45, 21–27. [Google Scholar] [CrossRef]
  54. Pažoutová, S.; Šrůtka, P.; Holuša, J.; Chudíčková, M.; Kolařík, M. The phylogenetic position of Obolarina dryophila (Xylariales). Mycol. Prog. 2010, 9, 501–507. [Google Scholar] [CrossRef]
  55. Kuhnert, E.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Rohde, M.; Stadler, M. Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers. 2017, 85, 1–43. [Google Scholar] [CrossRef]
  56. Triebel, D.; Peršoh, D.; Wollweber, H.; Stadler, M. Phylogenetic relationships among Daldinia, Entonaema, and Hypoxylon as inferred from ITS nrDNA analyses of Xylariales. Nova Hedwig 2005, 80, 25–43. [Google Scholar] [CrossRef]
  57. Kuhnert, E.; Fournier, J.; Peršoh, D.; Luangsa-Ard, J.J.D.; Stadler, M. New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers. 2014, 64, 181–203. [Google Scholar] [CrossRef]
  58. Læssøe, T.; Srikitikulchai, P.; Jennifer, J.; Luangsa-Ard, D.; Stadler, M. Theissenia reconsidered, including molecular phylogeny of the type species T. pyrenocrata and a new genus Durotheca (Xylariaceae, Ascomycota). IMA Fungus 2013, 4, 57–69. [Google Scholar] [CrossRef] [PubMed]
  59. Daranagama, D.A.; Liu, X.; Chamyuang, S.; Stadler, M.; Bahkali, A.; Hyde, K.D. Rhopalostroma brevistipitatum sp. nov. from Thailand with an extended generic description for Rhopalostroma. Phytotaxa 2015, 227, 229–242. [Google Scholar] [CrossRef] [Green Version]
  60. Stadler, M.; Kuhnert, E.; Peršoh, D.; Fournier, J. The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology 2013, 4, 5–21. [Google Scholar] [CrossRef]
  61. Bitzer, J.; Læssøe, T.; Fournier, J.; Kummer, V.; Decock, C.; Tichy, H.V.; Piepenbring, M.; Peršoh, D.; Stadler, M. Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol. Res. 2008, 112, 251–270. [Google Scholar] [CrossRef]
  62. Miller, A.N.; Vasilyeva, L.N.; Rogers, J.D. Chlorostroma subcubisporum gen. et sp. nov. and notes on the systematic position of Thuemenella cubispora. Sydowia 2007, 59, 138–147. [Google Scholar]
  63. Stadler, M.; Flessa, F.; Rambold, G.; Peršoh, D.; Fournier, J.; Læssøe, T.; Chlebicki, A.; Lechat, C. Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae). Mycoscience 2010, 51, 189–207. [Google Scholar] [CrossRef]
  64. Voglmayr, H.; Aguirre-Hudson, M.B.; Wagner, H.G.; Tello, S.; Jaklitsch, W.M. Lichens or endophytes? The enigmatic genus Leptosillia in the Leptosilliaceae fam. nov. (Xylariales), and Furfurella gen. nov. (Delonicicolaceae). Pers. Mol. Phylogeny Evol. Fungi 2019, 42, 228–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Zhang, C.L.; Wang, G.P.; Mao, L.J.; Komon-Zelazowska, M.; Yuan, Z.L.; Lin, F.C.; Druzhinina, I.S.; Kubicek, C.P. Muscodor fengyangensis sp. nov. from southeast China: Morphology, physiology and production of volatile compounds. Fungal Biol. Rev. 2010, 114, 797–808. [Google Scholar] [CrossRef]
  66. Becerra-Hernández, C.I.; González, D.; De Luna, E.; Mena-Portales, J. First report of pleoanamorphy in Gyrothrix verticiclada with an Idriella-like synanamorph. Cryptogam. Mycol. 2016, 37, 241–252. [Google Scholar] [CrossRef]
  67. Hernández-Restrepo, M.; Groenewald, J.Z.; Crous, P.W. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Pers. Mol. Phylogeny Evol. Fungi 2016, 36, 57–82. [Google Scholar] [CrossRef] [Green Version]
  68. Bundhun, D.; Jeewon, R.; Dayarathne, M.C.; Bulgakov, T.S.; Khramtsov, A.K.; Aluthmuhandiram, J.V.; Pem, D.; To-Anun, C.; Hyde, K.D. A morpho-molecular re-appraisal of Polystigma fulvum and P. rubrum (Polystigma, Polystigmataceae). Phytotaxa 2019, 422, 209–224. [Google Scholar] [CrossRef]
  69. Maharachchikumbura, S.S.N.; Hyde, K.D.; Perera, R.H.; Al-Sadi, A.M. Acrocordiella omanensis sp. nov. (Requienellaceae, Xylariales) from the Sultanate of Oman. Phytotaxa 2018, 338, 294–300. [Google Scholar] [CrossRef]
  70. Park, J.H.; Choi, G.J.; Lee, H.B.; Kim, K.M.; Jung, H.S.; Lee, S.W.; Jang, K.S.; Cho, K.Y.; Kim, J.C. Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J. Microbiol. Biotechnol. 2005, 15, 112–117. [Google Scholar]
  71. Hsieh, H.M.; Lin, C.R.; Fang, M.J.; Rogers, J.D.; Fournier, J.; Lechat, C.; Ju, Y.M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010, 54, 957–969. [Google Scholar] [CrossRef]
  72. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. Fungal Divers. 2017, 82, 1–105. [Google Scholar] [CrossRef]
  73. Marincowitz, S.; Crous, P.W.; Groenewald, J.Z.; Wingfield, M.J. Microfungi Occurring on Proteaceae in the Fynbos; CBS Biodiversity Series; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2008. [Google Scholar]
  74. Jaklitsch, W.M.; Voglmayr, H. Phylogenetic relationships of five genera of Xylariales and Rosasphaeria gen. nov. (Hypocreales). Fungal Divers. 2012, 52, 75–98. [Google Scholar] [CrossRef]
  75. Johnston, P.R.; Rogers, J.D.; Park, D.; Martin, N.A. Entalbostroma erumpens gen. et sp. nov. (Xylariaceae) from Phormium in New Zealand. Mycotaxon 2016, 131, 765–771. [Google Scholar] [CrossRef]
  76. Soca-Chafre, G.; Rivera-Orduña, F.N.; Hidalgo-Lara, M.E.; Hernandez-Rodriguez, C.; Marsch, R.; Flores-Cotera, L.B. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol. Rev. 2011, 115, 143–156. [Google Scholar] [CrossRef]
  77. Jayanetti, D.R.; Yue, Q.; Bills, G.F.; Gloer, J.B. Hypocoprins A–C: New sesquiterpenoids from the coprophilous fungus Hypocopra rostrata. J. Nat. Prod. 2015, 78, 396–401. [Google Scholar] [CrossRef]
  78. Ju, Y.M.; Hsieh, H.M.; Ho, M.C.; Szu, D.H.; Fang, M.J. Theissenia rogersii sp. nov. and phylogenetic position of Theissenia. Mycologia 2007, 99, 612–621. [Google Scholar] [CrossRef] [PubMed]
  79. Voglmayr, H.; Beenken, L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol. Prog. 2020, 19, 205–222. [Google Scholar] [CrossRef] [Green Version]
  80. U’Ren, J.M.; Miadlikowska, J.; Zimmerman, N.B.; Lutzoni, F.; Stajich, J.E.; Arnold, A.E. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol. Phylogenet. Evol. 2016, 98, 210–232. [Google Scholar] [CrossRef] [Green Version]
  81. Konta, S.; Hyde, K.D.; Phookamsak, R.; Xu, J.C.; Maharachchikumbura, S.S.N.; Daranagama, D.A.; McKenzie, E.H.C.; Boonmee, S.; Tibpromma, S.; Eungwanichayapant, P.D.; et al. Polyphyletic genera in Xylariaceae (Xylariales): Neoxylaria gen. nov. and Stilbohypoxylon. Mycosphere 2020, 11, 2629–2651. [Google Scholar] [CrossRef]
  82. Tang, A.M.C.; Jeewon, R.; Hyde, K.D. A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Divers. 2009, 34, 127–155. [Google Scholar]
  83. Fournier, J.; Stadler, M.; Hyde, K.D.; Duong, M.L. The new genus Rostrohypoxylon and two new Annulohypoxylon species from Northern Thailand. Fungal Divers. 2010, 40, 23–36. [Google Scholar] [CrossRef]
  84. Dai, D.Q.; Bahkali, A.H.; Li, Q.R.; Bhat, D.J.; Wijayawardene, N.N.; Li, W.J.; Chukeatirote, E.; Zhao, R.L.; Xu, J.C.; Hyde, K.D. Vamsapriya (Xylariaceae) re-described, with two new species and molecular sequence data. Cryptogam. Mycol. 2014, 35, 339–357. [Google Scholar] [CrossRef]
  85. Jiang, H.B.; Phookamsak, R.; Bhat, D.J.; Khan, S.; Bahkali, A.; Elgorban, A.; Hyde, K.D. Vamsapriya yunnana, a new species of Vamsapriya (Xylariaceae, Xylariales) associated with bamboo from Yunnan, China. Phytotaxa 2018, 356, 61–70. [Google Scholar] [CrossRef]
  86. Nonaka, K.; Ishii, T.; Shiomi, K.; Ōmura, S.; Masuma, R. Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycoscience 2013, 54, 394–399. [Google Scholar] [CrossRef]
  87. Sir, E.B.; Kuhnert, E.; Surup, F.; Hyde, K.D.; Stadler, M. Discovery of new mitorubrin derivatives from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales). Mycol. Prog. 2015, 14, 28. [Google Scholar] [CrossRef]
  88. Cheng, X.; Li, W.; Cai, L. Molecular phylogeny of Ascotricha, including two new marine algae-associated species. Mycologia 2015, 107, 490–504. [Google Scholar] [CrossRef]
  89. Daranagama, D.A.; Hyde, K.D.; Sir, E.B.; Thambugala, K.M.; Tian, Q.; Samarakoon, M.C.; McKenzie, E.H.; Jayasiri, S.C.; Tibpromma, S.; Bhat, J.D. Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers. 2018, 88, 1–165. [Google Scholar] [CrossRef]
  90. Crous, P.W.; Schumacher, R.K.; Wingfield, M.J.; Lombard, L.; Giraldo, A.; Christensen, M.; Gardiennet, A.; Nakashima, C.; Pereira, O.L.; Smith, A.J. Fungal systematics and evolution: FUSE 1. Sydowia 2015, 67, 81–118. [Google Scholar] [CrossRef]
  91. Li, D.W.; Schultes, N.P.; Chen, J.Y.; Wang, Y.X.; Castañeda-Ruiz, R.F. Circinotrichum sinense, a new asexual fungus from Hubei, China. Botany 2017, 95, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
  92. Crous, P.W.; Wingfield, M.J.; Lombard, L.; Roets, F.; Swart, W.J.; Alvarado, P.; Carnegie, A.J.; Moreno, G.; Luangsaard, J.; Thangavel, R.; et al. Fungal Planet description sheets: 951–1041. Pers. Mol. Phylogeny Evol. Fungi 2019, 43, 223–425. [Google Scholar] [CrossRef]
  93. Li, J.F.; Phookamsak, R.; Jeewon, R.; Tibpromma, S.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Chukeatirote, E.; Lumyong, S.; Hyde, K.D.; McKenzie, E.H.C. Establishment of Zygosporiaceae fam. nov. (Xylariales, Sordariomycetes) based on rDNA sequence data to accommodate Zygosporium. MYCOAP 2017, 8, 1855–1868. [Google Scholar] [CrossRef]
  94. Katoh, K.; Standley, K. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Glez-Peña, D.; Gómez-Blanco, D.; Reboiro-Jato, M.; Fdez-Riverola, F.; Posada, D. ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acid. Res. 2010, 38, 14–18. [Google Scholar] [CrossRef] [PubMed]
  97. Nylander, J.A.A. MrModeltest, Version 2; Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004; Available online: https://github.com/Nylander (accessed on 30 April 2020).
  98. Rambaut, A. FigTree Version 1.4.0. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 30 April 2020).
  99. Daranagama, D.A.; Camporesi, E.; Tian, Q.; Liu, X.; Chamyuang, S.; Stadler, M.; Hyde, K.D. Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers. 2015, 73, 203–238. [Google Scholar] [CrossRef]
  100. Petch, T. The genus Endocalyx, Berkeley and Broome. Ann. Bot. 1908, 22, 389–400. [Google Scholar] [CrossRef]
  101. Okada, G.; Tubaki, K. A new species and a new variety of Endocalyx (Deuteromycotina) from Japan. Mycologia 1984, 76, 300–313. [Google Scholar] [CrossRef]
  102. Vitoria, N.S.; Cavalcanti, M.A.Q.; Luz, E.D.M.N.; Bezerra, J.L. Endocalyx melanoxanthus var. melanoxanthus (Ascomycota): New to Brazil and three new hosts. Mycotaxon 2011, 117, 109–113. [Google Scholar] [CrossRef]
  103. Patel, U.S.; Pandey, A.K.; Rajak, R.C. Two new hyphomycetes. J. Mycol. Plant Pathol. 2002, 32, 70–71. [Google Scholar]
  104. Kobayashi, T. Index of Fungi Inhabiting Woody Plants in Japan: Host, Distribution and Literature; Zenkoku-Noson-Kyoiku Kyokai Publishing Co., Ltd.: Tokyo, Japan, 2007; pp. 1–1227. [Google Scholar]
  105. Lu, B.; Hyde, K.D.; Ho, W.H.; Tsui, K.M.; Taylor, J.E.; Wong, K.M.; Yanna; Zhou, D. Checklist of Hong Kong Fungi; Fungal Diversity Press: Hong Kong, China, 2000; pp. 1–207. [Google Scholar]
  106. Portales, J.M.; Sierra, A.M. Nuevas especies de Endocalyx y Stachylidium (Hyphomycetes, Deuteromycotina) de Cuba. Rev. Jard. Bot. Nac. 1984, 5, 53–60. [Google Scholar]
  107. Kapoor, J.N.; Munjal, R.L. Indian species of Stilbaceae. Indian Phytopathol. 1966, 19, 348–350. [Google Scholar]
  108. Heredia, G.; Arias, R.M.; Reyes, M. Contribucion al conocimiento de los hongos Hyphomycetes de Mexico. Acta Bot. Mex. 2000, 51, 39–51. [Google Scholar] [CrossRef] [Green Version]
  109. Taylor, J.E.; Hyde, K.D. Microfungi of Tropical and Temperate Palms; Fungal Diversity Press: Hong Kong, China, 2003; pp. 1–459. [Google Scholar]
  110. Hughes, S.J. Fungi from the gold coast. I. Mycol. Pap. 1952, 48, 1–91. [Google Scholar]
  111. Anonymous. Index of Plant Diseases in the United States. USDA Agric. Handb. 1960, 165, 1–531. [Google Scholar]
  112. Raabe, R.D.; Conners, I.L.; Martinez, A.P. Checklist of Plant Diseases in Hawaii; Information Text Series No. 22; College of Tropical Agriculture and Human Resources, University of Hawaii: Honolulu, HI, USA, 1981; pp. 1–313. [Google Scholar]
  113. Turner, P.D. Microorganisms associated with oil palm (Elaeis guineensis Jacq.). Phytopathol. Pap. 1971, 14, 1–58. [Google Scholar]
  114. Shaw, D.E. Microorganisms in Papua New Guinea. Dept. Prim. Ind. Res. Bull. 1984, 33, 1–344. [Google Scholar]
  115. Urtiaga, R. [Host index of plant diseases and disorders from Venezuela—Addendum]. 2004; pp. 1–268. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39196&thisError= (accessed on 30 April 2020).
  116. Urtiaga, R. Indice de enfermedades en plantas de Venezuela y Cuba, Second Edition. 2004; pp. 1–301. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39195&thisError= (accessed on 30 April 2020).
  117. Thaung, M.M. A list of hypomycetes (and agonomycetes) in Burma. Australas. Mycol. 2008, 27, 149–172. [Google Scholar]
  118. Pinruan, U.; Hyde, K.D.; Lumyong, S.; McKenzie, E.H.C.; Jones, E.B.G. Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Divers. 2007, 25, 157–173. [Google Scholar]
  119. Matsushima, T. Matsushima Mycological Memoirs No. 1. Saprophytic Microfungi from Taiwán, Part1; Matsushima Fungus collection: Kobe, Japan, 1980; pp. 1–82. [Google Scholar]
  120. Ahmad, S. Fungi of West Pakistan. Biol. Soc. Pak. Monogr. 1969, 5, 1–110. [Google Scholar]
  121. Zhuang, W.Y. Higher Fungi of Tropical China; Mycotaxon Limited: Ithaca, NY, USA, 2001; pp. 1–485. [Google Scholar]
  122. Hughes, S.J. New Zealand Fungi. 25. Miscellaneous species. N. Z. J. Bot. 1978, 16, 311–370. [Google Scholar] [CrossRef]
  123. Delgado, G. South Florida microfungi: New records of saprophytic hyphomycetes on plant debris. FLA Sci. 2008, 71, 76–89. [Google Scholar]
  124. Arnold, G.R.W. Lista de Hongos Fitopatogenos de Cuba; Ministerio de Cultura Editorial Cientifico-Tecnica: Havana, Cuba, 1986; pp. 1–207. [Google Scholar]
  125. Sierra, A.M. Hifomicetes Demaciaceos de Sierra del Rosario, Cuba; Editorial Academica: Havana, Cuba, 1984; pp. 1–81. [Google Scholar]
  126. Urtiaga, R. Indice de Enfermedades en Plantas de Venezuela y Cuba; Impresos en Impresos Nuevo Siglo S.R.L.: Barquisimeto, Venezuela, 1986; pp. 1–202. [Google Scholar]
  127. Delgado-Rodriguez, G.; Mena-Portales, J.; Calduch, M.; Decock, C. Hyphomycetes (hongos mitosporicos) del area protegida mil cumbres, Cuba Occidental. Cryptog. Mycol. 2002, 23, 277–293. [Google Scholar]
  128. Petrak, F. Ein Beitrag zur Pilzflora Floridas. Sydowia 1953, 7, 103–116. [Google Scholar]
  129. Sutton, B.C. New and interesting Hyphomycetes from Tampa, Florida. Mycologia 1978, 70, 784–801. [Google Scholar] [CrossRef]
  130. Capdeet, M.; Romero, A.I. Fungi from palms in Argentina. 1. Mycotaxon 2010, 112, 339–355. [Google Scholar] [CrossRef]
  131. Vitoria, N.S.; Fortes, N.G.S.; dos Santos, M.A.L.; Barbosa, R.L. Mycota (Ascomycota) of Syagrus coronata (Mart.) Becc., Raso da Catarina Ecological Station, Brazil: New records. Acta Bras. 2020, 4, 110–120. [Google Scholar] [CrossRef]
  132. Hughes, S.J. Fungi from the gold coast. II. Mycol. Pap. 1953, 50, 1–104. [Google Scholar]
  133. Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: London, UK, 1971; pp. 1–608. [Google Scholar]
  134. Species Fungorum. 2021. Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 30 April 2020).
  135. Samarakoon, B.C.; Wanasinghe, D.N.; Samarakoon, M.C.; Phookamsak, R.; McKenzie, E.H.; Chomnunti, P.; Hyde, K.D.; Lumyong, S.; Karunarathna, S.C. Multi-gene phylogenetic evidence suggests Dictyoarthrinium belongs in Didymosphaeriaceae (Pleosporales, Dothideomycetes) and Dictyoarthrinium musae sp. nov. on Musa from Thailand. MycoKeys 2020, 71, 101–118. [Google Scholar] [CrossRef]
Figure 1. Maximum likelihood majority rule consensus tree for the analyses of selected Xylariomycetidae isolates based on a dataset of combined ITS, LSU, rpb2, and tub2 nucleotide sequence. Bootstrap support values for maximum likelihood (ML) equal to or higher than 50% are given above each branch. Bayesian posterior probabilities (BYPP) equal to or greater than 0.90 are given at the nodes. Novel taxa are in blue bold and ex-type strains are in black bold. The tree is rooted to Delonicicolaceae and Leptosilliaceae (Delonicicolales). The asterisks represent unstable species.
Figure 1. Maximum likelihood majority rule consensus tree for the analyses of selected Xylariomycetidae isolates based on a dataset of combined ITS, LSU, rpb2, and tub2 nucleotide sequence. Bootstrap support values for maximum likelihood (ML) equal to or higher than 50% are given above each branch. Bayesian posterior probabilities (BYPP) equal to or greater than 0.90 are given at the nodes. Novel taxa are in blue bold and ex-type strains are in black bold. The tree is rooted to Delonicicolaceae and Leptosilliaceae (Delonicicolales). The asterisks represent unstable species.
Life 11 00486 g001
Figure 2. Haploanthostomella elaeidis (MFLU 20-0522, holotype). (A) Substrate. (B,C) Appearance of ascomata on the host surface. (D) Sections of ascomata. (E) Peridium. (F) Hamathecium. (G) Septa of paraphyses show in red arrows. (H,IK) Asci. (L) J- apical ring in Melzer’s reagent. (M,N,PR) Ascospores with mucilaginous cap (red arrows in M, Q, R) and germ slit (red arrows in P). (O) An ascospore with verrucose wall. Scale bars: B = 1000 μm, C = 200 μm, D = 500 μm, E, G, L = 20 μm, F, H–K = 50 μm, M–P = 10 μm, Q–R = 5 μm.
Figure 2. Haploanthostomella elaeidis (MFLU 20-0522, holotype). (A) Substrate. (B,C) Appearance of ascomata on the host surface. (D) Sections of ascomata. (E) Peridium. (F) Hamathecium. (G) Septa of paraphyses show in red arrows. (H,IK) Asci. (L) J- apical ring in Melzer’s reagent. (M,N,PR) Ascospores with mucilaginous cap (red arrows in M, Q, R) and germ slit (red arrows in P). (O) An ascospore with verrucose wall. Scale bars: B = 1000 μm, C = 200 μm, D = 500 μm, E, G, L = 20 μm, F, H–K = 50 μm, M–P = 10 μm, Q–R = 5 μm.
Life 11 00486 g002
Figure 3. Endocalyx metroxyli (MFLU 15-1454, holotype). (A) Forest in Krabi Province. (B) Palm samples. (CE) Appearance of conidiomata on host. (F) Vertical cut of a conidioma. (GH) Vertical section of a conidioma. (I) Section of peridium. (J) Group of conidia. (K) Conidiophores reduced to conidiogenous cell with conidium. (LS) Conidia (PR, Conidia with conidiogenous cells). (T) Germ slit (red arrow). (U) Germinated conidia. (V) Colonies on MEA media. Scale bars: B = 2 cm, C = 500 μm, D–H = 200 μm, I, J = 20 μm, L–T = 5 μm, U = 10 μm.
Figure 3. Endocalyx metroxyli (MFLU 15-1454, holotype). (A) Forest in Krabi Province. (B) Palm samples. (CE) Appearance of conidiomata on host. (F) Vertical cut of a conidioma. (GH) Vertical section of a conidioma. (I) Section of peridium. (J) Group of conidia. (K) Conidiophores reduced to conidiogenous cell with conidium. (LS) Conidia (PR, Conidia with conidiogenous cells). (T) Germ slit (red arrow). (U) Germinated conidia. (V) Colonies on MEA media. Scale bars: B = 2 cm, C = 500 μm, D–H = 200 μm, I, J = 20 μm, L–T = 5 μm, U = 10 μm.
Life 11 00486 g003
Table 1. Names, strain numbers and corresponding GenBank accession numbers of the taxa used in phylogenetic analyses, the ex-type strains are in bold.
Table 1. Names, strain numbers and corresponding GenBank accession numbers of the taxa used in phylogenetic analyses, the ex-type strains are in bold.
OrderFamilySpeciesStrain No.GenBank Accession No.References
ITSLSUrpb2tub2
AmphisphaerialesApiosporaceaeArthrinium balearicumAP24118MK014869MK014836-MK017946[21]
AmphisphaerialesApiosporaceaeArthrinium caricicolaCBS 145127MK014871MK014838-MK017948[21]
AmphisphaerialesApiosporaceaeArthrinium hydeiCBS 114990KF144890KF144936-KF144982[22]
AmphisphaerialesApiosporaceaeArthrinium phragmitisCBS 135458KF144909KF144956-KF145001[22]
AmphisphaerialesApiosporaceaeArthrinium pseudospegazziniiCBS 102052KF144911KF144958-KF145002[22]
AmphisphaerialesApiosporaceaeNigrospora aurantiacaCGMCC 3.18130NR_153477NG_069394-KY019465[23]
AmphisphaerialesApiosporaceaeNigrospora brasiliensisCMM 1214KY569629--MK720816[24]
AmphisphaerialesApiosporaceaeNigrospora zimmermaniiCBS 290.62KY385309-KY806276KY385317[23]
AmphisphaerialesBeltraniaceaeBeltrania rhombicaCBS 123.58 = IMI 072432MH553990MH554209MH554899MH704631[25]
AmphisphaerialesBeltraniaceaeBeltraniella endiandraeCBS 137976KJ869128KJ869185--[26]
AmphisphaerialesBeltraniaceaeBeltraniopsis neolitseaeCBS 137974KJ869126KJ869183--[26]
AmphisphaerialesBeltraniaceaeArecophila bambusaeHKUCC 4794-AF452038--[27]
XylarialesCainiaceaeAlishanica miscanthiiFU31025MK503821MK503827--[3]
XylarialesCainiaceaeAmphibambusa bambusicolaMFLUCC 11-0617KP744433KP744474--[28]
XylarialesCainiaceaeAtrotorquata lineataHKUCC 3263 AF009807---Unpublished
XylarialesCainiaceaeCainia anthoxanthisMFLUCC 15-0539KR092787KR092777--[5]
XylarialesCainiaceaeCainia desmazieriCAIKT949896KT949896--[29]
XylarialesCainiaceaeCainia globosaMFLUCC 13-0663KX822127KX822123--[30]
XylarialesCainiaceaeCainia graminisCBS 136.62KR092793AF431949--[5,31]
XylarialesCainiaceaeLongiappendispora chromolaenaeMFLUCC 17-1485MT214370MT214464--[11]
XylarialesCainiaceaeEndocalyx cinctusJCM 7946LC228648LC228704--[32]
XylarialesCainiaceaeEndocalyx metroxyliMFLUCC 15-0723AMT929162MT929313--This study
XylarialesCainiaceaeEndocalyx metroxyliMFLUCC 15-0723BMT929163MT929314-MT928155This study
XylarialesCainiaceaeEndocalyx metroxyliMFLUCC 15-0723C-MT929315--This study
XylarialesCainiaceaeSeynesia erumpensSMH 1291-AF279410--[33]
XylarialesClypeosphaeriaceaeClypeosphaeria mamillanaCBS 140735KT949897KT949897MF489001MH704637[29,34]
XylarialesConiocessiaceaeConiocessia anandraCo108GU553338GU553349--[35]
XylarialesConiocessiaceaeConiocessia cruciformisCo116GU553336GU553347--[35]
XylarialesConiocessiaceaeConiocessia maximaCo117GU553332GU553344--[35]
XylarialesConiocessiaceaeConiocessia minimaCo111GU553334GU553345--[35]
XylarialesConiocessiaceaeConiocessia nodulisporioidesCBS 281.77T-AJ875224--[36]
XylarialesConiocessiaceaeParaxylaria rosacearumTASM 6132MG828941MG829050--[37]
XylarialesDiatrypaceaeAllocryptovalsa polysporaMFLUCC 17-0364 MF959500MF959503-MG334556[38]
XylarialesDiatrypaceaeAllodiatrype arengaeMFLUCC 15-0713 MN308411MN308402MN542886MN340297[39]
XylarialesDiatrypaceaeCryptovalsa rabenhorstiiCreI = CBS 125574KC774567KC774567--[40]
XylarialesDiatrypaceaeDiatrype disciformisCBS 197.49-DQ470964DQ470915-[41]
XylarialesDiatrypaceaeDiatrypella verruciformisUCROK1467JX144793--JX174093[42]
XylarialesDiatrypaceaeEutypa lataCBS 208.87DQ006927MH873755-DQ006969[43,44]
XylarialesDiatrypaceaeEutypella caricaeEL5CAJ302460---[45]
XylarialesDiatrypaceaeHalodiatrype salinicolaMFLUCC 15-1277KX573915--KX573932[46]
XylarialesDiatrypaceaeMonosporascus cannonballusCMM3646JX971617---Unpublished
XylarialesDiatrypaceaeNeoeutypella baoshanensisEL51C, CBS 274.87AJ302460---[45]
XylarialesDiatrypaceaePedumispora rhizophoraeBCC44877KJ888853KJ888850--[47]
XylarialesDiatrypaceaePeroneutypa longiascaMFLUCC 17-0371MF959502MF959505-MG334558[38]
XylarialesFasciatisporaceaeFasciatispora arengaeMFLUCC 15-0326aMK120275MK120300MK890794MK890793[48]
XylarialesFasciatisporaceaeFasciatispora calamiMFLUCC 15-0294-MF459055-MF459056[49]
XylarialesFasciatisporaceaeFasciatispora cocoesMFLUCC 18-1445MN482680MN482675MN481517MN505154[13]
XylarialesFasciatisporaceaeFasciatispora nypaeMFLUCC 11-0382-KP744484--[28]
XylarialesFasciatisporaceaeFasciatispora petrakii -AY083828--Unpublished
XylarialesGraphostromataceaeBiscogniauxia nummulariaMUCL 51395KY610382KY610427KY624236KX271241[50]
XylarialesGraphostromataceaeCamillea obulariaATCC 28093KY610384KY610429KY624238KX271243[50]
XylarialesGraphostromataceaeGraphostroma platystomumCBS 270.87JX658535DQ836906KY624296HG934108[50,51,52,53]
XylarialesGraphostromataceaeObolarina dryophilaMUCL 49882GQ428316GQ428316KY624284GQ428322[50,54]
XylarialesHansfordiaceaeHansfordia pulvinateCBS 194.56MK442585MH869122KU684307-[24]
XylarialesHansfordiaceaeHansfordia pulvinateCBS 144422MK442587MK442527--[24]
XylarialesHypoxylaceaeAnnulohypoxylon truncatumCBS 140778KY610419KY610419KY624277KX376352[50,55]
XylarialesHypoxylaceaeAnthocanalis spartiMFLUCC 14-0010KP297394KP340536KP340522KP406605[54]
XylarialesHypoxylaceaeAnthostoma decipiensCD = CBS 133221KC774565KC774565--[40]
XylarialesHypoxylaceaeDaldinia concentricaCBS 113277AY616683KY610434KY624243KC977274[50,56,57]
XylarialesHypoxylaceaeDurotheca depressaBCC28073---GQ160492[58]
XylarialesHypoxylaceaeEntonaema liquescensATCC 46302KY610389KY610443KY624253KX271248[50]
XylarialesHypoxylaceaeHypomontagnella monticulosaMUCL 54604KY610404KY610487KY624305KX271273[50]
XylarialesHypoxylaceaeHypoxylon fragiformeMUCL 51264KC477229KM186295KM186296KX271282[50,59,60]
XylarialesHypoxylaceaeJackrogersella multiformisCBS 119016KC477234KY610473KY624290KX271262[50,55,57]
XylarialesHypoxylaceaePyrenomyxa morganiiCBS 116990TAM749920---[61]
XylarialesHypoxylaceaePyrenomyxa piceaILLS 58257-EF562506--[62]
XylarialesHypoxylaceaePyrenopolyporus hunteriMUCL 52673KY610421KY610472KY624309KU159530[50,55]
XylarialesHypoxylaceaeRhopalostroma indicumCBS 113035MH862909MH874483--[44]
XylarialesHypoxylaceaeThamnomyces dendroideaCBS 123578FN428831KY610467KY624232KY624313[50,63]
XylarialesHypoxylaceaeThuemenella cubisporaCBS 119807JX658531EF562508--[62]
XylarialesHypoxylaceaePhylacia sagranaCBS 119992AM749919---[61]
XylarialesHypoxylaceaePyrenopolyporus symphyonTBRC:8873MH938529MH938538MK165428MK165419[64]
XylarialesInduratiaceaeEmarcea castanopsidicolaCBS 117105MK762710MK762717MK791285MK776962[64]
XylarialesInduratiaceaeEmarcea eucalyptigenaCBS 139908MK762711MK762718MK791286MK776963[64]
XylarialesInduratiaceaeInduratia fengyangensisCGMCC 2862HM034856HM034859HM034849HM034843[65]
XylarialesInduratiaceaeInduratia thailandicaMFLUCC 17-2669MK762707MK762714MK791283 MK776960[64]
XylarialesLopadostomataceaeCreosphaeria sassafrasSTMA 14087KY610411KY610468KY624265KX271258[50]
XylarialesLopadostomataceaeLopadostoma turgidumCBS 133207KC774618KC774618KC774563MF489024[29,40]
XylarialesMicrodochiaceaeIdriella lunataMUCL 4103KC775734KC775709--[66]
XylarialesMicrodochiaceaeIdriella lunataCBS 204.56KP859044KP858981--[67]
XylarialesMicrodochiaceaeMicrodochium phragmitisCBS 423.78KP859012KP858948KP859121KP859076[67]
XylarialesPolystigmataceaePolystigma fulvumMFLU 18-0261MK429738MK429727--[68]
XylarialesPolystigmataceaePolystigma rubrumMFLU 15-3091KY594023MF981079--[68]
XylarialesRequienellaceaeAcrocordiella occultaRS9 KT949893KT949893--[29]
XylarialesRequienellaceaeAcrocordiella omanensisSQUCC 15091MG584568MG584570--[69]
XylarialesRequienellaceaeRequienella fraxiniRS2KT949909KT949909--[29]
XylarialesRequienellaceaeRequienella seminudaRS12 = CBS 140502KT949912KT949912MK523300-[29,64]
XylarialesXylariaceaeAbieticola koreanaEML-F0010-1JN977612JQ014618KP792128KP792126[70]
XylarialesXylariaceaeAmphirosellinia nigrosporaHAST 91092308GU322457-GQ848340GQ495951[71]
XylarialesXylariaceaeAnthostomella formosaMFLUCC 14-0170KP297403KP340544KP340531KP406614[59]
XylarialesXylariaceaeAnthostomella helicofissaMFLUCC 14-0173KP297406KP340547KP340534KP406617[59]
XylarialesXylariaceaeAnthostomella obesaMFLUCC 14-0171KP297405KP340546KP340533KP406616[59]
XylarialesXylariaceaeAnthostomella pseudobambusicolaMFLUCC 15-0192KU940153KU863141--[72]
XylarialesXylariaceaeAnthostomelloides brabejiCBS 110128EU552098EU552098--[73]
XylarialesXylariaceaeAnthostomelloides forlicesenicaMFLUCC 14-0558KP297397KP340539-KP406608[66]
XylarialesXylariaceaeAnthostomelloides krabiensisMFLUCC 15-0678 KX305927KX305928KX305929-[30]
XylarialesXylariaceaeAnthostomelloides leucospermiCBS:110126EU552100---[73]
XylarialesXylariaceaeAnthostomelloides proteaeCBS 110127EU552101---[73]
XylarialesXylariaceaeAstrocystis mirabilis94070803 HASTGU322448-GQ844835GQ495941[71]
XylarialesXylariaceaeBrunneiperidium gracilentumMFLUCC 14-0011 Ex-type KP297400KP340542KP340528KP406611[66]
XylarialesXylariaceaeCollodiscula japonicaCBS 124266 JF440974JF440974KY624273KY624316[50,74]
XylarialesXylariaceaeConiolariella gamsiiCo27IRAN 842C, CBS114379 (T)GU553325GU553329--[35]
XylarialesXylariaceaeEntalbostroma erumpensICMP 21152KX258206-KX258204KX258205[75]
XylarialesXylariaceaeEntoleuca mammataJ.D.R. 100 GU300072-GQ844782GQ470230[71]
XylarialesXylariaceaeEuepixylon sphaeriostomumJ.D.R. 261GU292821-GQ844774GQ470224[71]
XylarialesXylariaceaeHalorosellinia oceanicaSGLAf82EU715635---[76]
XylarialesXylariaceaeHypocopra rostrataNRRL 66178KM067909---[77]
XylarialesXylariaceaeHypocreodendron sanguineumJ.D.R. 169GU322433-GQ844819 GQ487710 [71]
XylarialesXylariaceaeKretzschmaria clavusYMJ 114EF026126-GQ844789EF025611[71,78]
XylarialesXylariaceaeLinosporopsis ischnothecaLIF1 = CBS 145761 MN818952MN818952 MN820708 MN820715[79]
XylarialesXylariaceaeLunatiannulus irregularisMFLUCC 14-0014KP297398KP340540KP340526KP406609[57]
XylarialesXylariaceaeNemania serpensCBS 679.86KU683765-KU684284KU684188[80]
XylarialesXylariaceaeNeoxylaria arengaeMFLUCC 15-0292MT496747-MT502418-[81]
XylarialesXylariaceaePodosordaria mexicanaWSP 176 GU324762-GQ853039GQ844840[71]
XylarialesXylariaceaePoronia punctataCBS 656.78 KT281904KY610496KY624278KX271281[5,50]
XylarialesXylariaceaeRosellinia aquilaMUCL 51703KY610392KY610460KY624285KX271253[50]
XylarialesXylariaceaeRostrohypoxylon terebratumCBS 119137DQ631943DQ840069DQ631954DQ840097[82,83]
XylarialesXylariaceaeRuwenzoria pseudoannulataMUCL 51394KY610406KY610494KY624286KX271278[50]
XylarialesXylariaceaeSarcoxylon compunctumCBS 359.61KT281903KY610462KY624230KX271255[5,50]
XylarialesXylariaceaeStilbohypoxylon elaeicolaY.M.J. 173EF026148-GQ844826EF025616[71]
XylarialesXylariaceaeStilbohypoxylon elaeidisMFLUCC 15-0295aMT496745MT496755MT502416MT502420[81]
XylarialesXylariaceaeStilbohypoxylon quisquiliarumY.M.J. 172EF026119-GQ853020EF025605[71]
XylarialesXylariaceaeVamsapriya bambusicolaMFLUCC 11-0477KM462835KM462836KM462834KM462833[84]
XylarialesXylariaceaeVamsapriya breviconidiophoraMFLUCC 14-0436MF621584MF621588--[39]
XylarialesXylariaceaeVamsapriya indicaMFLUCC 12-0544KM462839KM462840KM462841KM462838[84]
XylarialesXylariaceaeVamsapriya khunkonensisMFLUCC 11-0475KM462830KM462831KM462829KM462828[84]
XylarialesXylariaceaeVamsapriya yunnanaKUMCC 18-0008MG833874MG833873MG833875-[85]
XylarialesXylariaceaeVirgaria boninensisJCM 18624AB740956AB740960--[86]
XylarialesXylariaceaeVirgaria nigraCBS 128006MH864744MH876180--[44]
XylarialesXylariaceaeXylaria hypoxylonCBS 122620KY610407KY610495KY624231KX271279[50,87]
Sordariomycetes genera
incertae sedis
Xylariales genera incertae sedisMelanographium phoenicisMFLUCC 18-1481MN482677MN482678--[13]
Sordariomycetes genera
incertae sedis
Xylariales genera incertae sedisCeratocladium microspermumCBS126092MH864077MH875534--[44]
XylarialesXylariales genera incertae sedisAscotricha chartarumCBS 234.97KF893284--KF893271[88]
XylarialesXylariales genera incertae sedisAscotricha longipilaOUCMBI110118 (T)KC503896--KF893265[88]
XylarialesXylariales genera incertae sedisAscotricha lusitanicaCBS 462.70 (IT) KF893289--KF893275[88]
XylarialesXylariales genera incertae sedisAscotricha parvisporaOUCMBI110001 (T)JX014298--KF893267[88]
XylarialesXylariales genera incertae sedisAscotricha sinuosaOUCMBI101190 (T) JX014299--KF893266[88]
Xylariales Xylariales genera incertae sedisAlloanthostomella rubicolaMFLUCC 14-0175KP297407KP340548KP340535KP406618[89]
XylarialesXylariales genera incertae sedisCircinotrichum cycadisCPC 17285KJ869121KJ869178--[26]
XylarialesXylariales genera incertae sedisCircinotrichum maculiformeCPC 24566KR611874KR611895--[90]
XylarialesXylariales genera incertae sedisCircinotrichum papakuraeCBS 101373KR611876KR611897--[90]
XylarialesXylariales genera incertae sedisCircinotrichum sinense KY994106KY994107--[91]
XylarialesXylariales genera incertae sedisGyrothrix eucalyptiCPC 36066MN562109MN567617--[92]
XylarialesXylariales genera incertae sedisGyrothrix inopsBE108KC775746KC775721--[66]
XylarialesXylariales genera incertae sedisGyrothrix oleaeCPC 37069MN562136MN567643--[92]
XylarialesXylariales genera incertae sedisGyrothrix ramosaMUCL54061KC775747KC775722--[66]
XylarialesXylariales genera incertae sedisHaploanthostomella elaeidisMFLU 20-0522MT929161MT929312MT928154-This study
XylarialesXylariales genera incertae sedisNeoanthostomella pseudostromaticaMFLUCC 11-0610KU940158KU863146--[72]
XylarialesXylariales genera incertae sedisNeoanthostomella viticolaMFLUCC 16-0243KX505957KX505958KX789496KX789495[89]
XylarialesXylariales genera incertae sedisPseudoanthostomella conorumCBS 119333EU552099---[73]
XylarialesXylariales genera incertae sedisPseudoanthostomella delitescensMFLUCC 16-0477 KX533451KX533452KX789491KX789490[89]
XylarialesXylariales genera incertae sedisPseudoanthostomella pini-nigraeMFLUCC 16-0478KX533453KX533454KX789492-[89]
XylarialesXylariales genera incertae sedisPseudoanthostomella sepelibilis AY908989AY875645--Unpublished
XylarialesXylariales genera incertae sedisXenoanthostomella chromolaenaeMFLUCC 17-1484MN638863MN638848--[3]
XylarialesZygosporiaceaeZygosporium oscheoidesMFLUCC 14-0402MF621585MF621589--[93]
XylarialesZygosporiaceaeZygosporium minusHKAS99625MF621586MF621590--[93]
Table 2. Host and locality information of Endocalyx reported worldwide based on the records of Species Fungorum 2021.
Table 2. Host and locality information of Endocalyx reported worldwide based on the records of Species Fungorum 2021.
No.SpeciesHostCountryReference
EudicotsMonocots
1Endocalyx amarkantakensisShorea robusta (Dipterocarpaceae) India (Holotype)[103]
2E. cinctus * Livistona chinensis var. boninensis (Arecaceae; solitary palm)Japan[104]
Oncosperma fasciculatum (Arecaceae; clustering, rarely solitary palm)Japan[101]
Oncosperma sp. (Arecaceae; clustering, rarely solitary palm)Sri Lanka
(Holotype)
[100]
Phoenix canariensis (Arecaceae; solitary palm)Japan[101]
Phoenix hanceana (Arecaceae; solitary palm)Hong Kong[105]
Trachycarpus fortunei (Arecaceae; solitary palm)Japan[101]
3E. collantesis Smilax sp. (Smilacaceae)Cuba (Holotype)[106]
4E. indicustwigs of woody India (Holotype)[107]
5E. indumentum Livistona chinensis var. boninensis (Arecaceae; solitary palm)Japan (Holotype)[101,104]
Phoenix canariensis (Arecaceae; solitary palm)Japan[104]
6E. melanoxanthus Acrocomia mexicana (Arecaceae)Mexico[108]
Archontophoenix alexandrae (Arecaceae; solitary palm)Australia[109]
Hong Kong[105,109]
Malaysia[109]
Singapore[109]
ArecaceaeMexico[108]
Arenga engleri (Arecaceae; clustering palm)Hong Kong[105]
Japan[104]
Dypsis lutescens (=Chrysalidocarpus lutescens) (Arecaceae; clustering palm)Japan[104]
Caryota urens (Arecaceae; solitary palm)Sri Lanka (Holotype)[100]
Cocos nucifera (Arecaceae; solitary palm)Australia[109]
Ghana[110]
Hawaii[111,112]
Japan[104]
Malaysia[109,113]
Papua New Guinea[114]
Seychelles[109]
Singapore[109]
Coffea arabica (Rubiaceae) Venezuela[115]
Dracaena fragrans (Asparagaceae)Cuba[116]
Venezuela[115]
Elaeis guineensis (Arecaceae; solitary palm)Ghana[110]
Myanmar[117]
Sierra Leone[113]
Elaeis sp. (Arecaceae; solitary palm)Japan[104]
Licuala longicalycata (Arecaceae; solitary palm)Thailand[118]
Livistona chinensis (Arecaceae; solitary palm)Hong Kong[105]
Livistona chinensis var. boninensis (Arecaceae; solitary palm)Japan[104]
Livistona rotundifolia (Arecaceae; solitary palm)Taiwan[119]
Livistona speciosa (Arecaceae; solitary palm)Myanmar[117]
Nannorrhops ritchieana (Arecaceae; clustering palm)Pakistan[120]
Phoenix canariensis (Arecaceae; solitary palm)Japan[104]
Phoenix hanceana (Arecaceae; solitary palm)Hong Kong[105,121]
Phoenix reclinata (Arecaceae; solitary palm)Ghana[110]
Phoenix roebelenii (Arecaceae; solitary palm)Japan[104]
Phoenix roebelenii-senegalensis (Arecaceae; solitary palm)Japan[104]
Ravenala madagascariensis (Strelitziaceae)Japan[104]
Taiwan[119]
Ripogonum scandens (Ripogonaceae)New Zealand[122]
Roystonea borinquena (Arecaceae; solitary palm)USA (Florida)[123]
Roystonea regia (Arecaceae; solitary palm)Cuba[124,125,126,127]
Sabal palmetto (Arecaceae; solitary palm)USA (Florida)[128]
Serenoa serrulata (Arecaceae; clustering and solitary palm)USA (Florida)[129]
Smilax sp. (Smilacaceae)USA (Florida)[128]
Trachycarpus fortunei (Arecaceae; solitary palm)China[109]
unknown, palmAustralia[109]
China[109]
Hong Kong[109]
Malaysia[109]
Seychelles[109]
Singapore[109]
Wodyetia bifurcata (Arecaceae; solitary palm)Florida[123]
E. melanoxanthus
(=E. melanoxanthus var. grossus)
Trachycarpus fortunei (Arecaceae; solitary palm)Japan[101]
E. melanoxanthus
(=E. melanoxanthus var. melanoxanthus)
Acrocomia intumescens (Arecaceae; solitary palm)Brazil[102]
Butia yatay (Arecaceae; solitary palm)Argentina[130]
Cocos nucifera (Arecaceae; solitary palm)Ghana[101]
Euterpe edulis (Arecaceae; solitary, or rarely clustering palm (growing in dense tufts or clumps) and then with few stems)Argentina[130]
Brazil[102]
Euterpe oleracea (Arecaceae; clustering palm)Brazil[102]
Livistona chinensis var. boninensis (Arecaceae; solitary palm)Japan[101]
Livistona chinensis var. subglobosa (Arecaceae; solitary palm)Japan[101]
Phoenix canariensis (Arecaceae; solitary palm)Japan[101]
Phoenix roebelenii (Arecaceae; solitary palm)Japan[101]
Satakentia liukiuensis (Arecaceae; solitary palm)Japan[101]
Syagrus coronata (Arecaceae; solitary palm)Brazil[131]
Syagrus romanzoffiana (Arecaceae; solitary palm)Argentina[130]
Trachycarpus fortunei (Arecaceae; solitary palm)Japan[101]
Washingtonia robusta (Arecaceae; solitary palm)Japan[101]
7E. thwaitesii (Type species)Cissus oreophila (Vitaceae) Ghana[132]
Cissus sp. (Vitaceae) Ghana[133]
Sri Lanka[133]
Oncosperma sp. (Arecaceae; clustering, rarely solitary palm)Ghana[133]
Sri Lanka (Holotype)[133]
* Have molecular data.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Konta, S.; Hyde, K.D.; Eungwanichayapant, P.D.; Karunarathna, S.C.; Samarakoon, M.C.; Xu, J.; Dauner, L.A.P.; Aluthwattha, S.T.; Lumyong, S.; Tibpromma, S. Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota). Life 2021, 11, 486. https://doi.org/10.3390/life11060486

AMA Style

Konta S, Hyde KD, Eungwanichayapant PD, Karunarathna SC, Samarakoon MC, Xu J, Dauner LAP, Aluthwattha ST, Lumyong S, Tibpromma S. Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota). Life. 2021; 11(6):486. https://doi.org/10.3390/life11060486

Chicago/Turabian Style

Konta, Sirinapa, Kevin D. Hyde, Prapassorn D. Eungwanichayapant, Samantha C. Karunarathna, Milan C. Samarakoon, Jianchu Xu, Lucas A. P. Dauner, Sasith Tharanga Aluthwattha, Saisamorn Lumyong, and Saowaluck Tibpromma. 2021. "Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota)" Life 11, no. 6: 486. https://doi.org/10.3390/life11060486

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop