Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
3.1. Association of GRIN2A and GRIN2B Polymorphisms with Leading (Positive vs. Negative) Symptoms of Schizophrenia
3.2. Association of GRIN2A and GRIN2B Polymorphisms with Type of Course of Schizophrenia (Continuous Course vs. Episodic Course)
3.3. Association of GRIN2A and GRIN2B Polymorphisms with Age of Onset of Schizophrenia (Early vs. Adult)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Lang, U.E.; Puls, I.; Müller, D.J.; Strutz-Seebohm, N.; Gallinat, J. Molecular Mechanisms of Schizophrenia. Cell. Physiol. Biochem. 2007, 20, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, A. The Neurochemical Circuitry of Schizophrenia. Pharmacopsychiatry 2006, 39 (Suppl. S1), S10–S14. [Google Scholar] [CrossRef]
- Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharmacol. 2015, 29, 97–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M. Het Beweeglijke Brein. De Neurowetenschappelijke Achtergrond van de Psychische Functies, 3rd ed.; Mension: Haarlem, The Netherlands, 2021. [Google Scholar]
- Li, Z.J.; Wang, B.J.; Ding, M.; Pang, H.; Sun, X.F.; Yang, J. The association between glutamate receptor gene SNP and schizophrenia. Fa Yi Xue Za Zhi 2008, 24, 369–374, 377. [Google Scholar] [PubMed]
- Wu, S.-L.; Wang, W.-F.; Shyu, H.-Y.; Ho, Y.-J.; Shieh, J.-C.; Fu, Y.-P.; Wu, S.-T.; Cheng, C.-W. Association analysis of GRIN1 and GRIN2B polymorphisms and Parkinson’s disease in a hospital-based case—Control study. Neurosci. Lett. 2010, 478, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H. Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer’s Disease: Insights from a Synaptic Machinery Perspective. J. Mol. Neurosci. 2021, 1–14. [Google Scholar] [CrossRef]
- Dean, B.; Gibbons, A.S.; Boer, S.; Uezato, A.; Meador-Woodruff, J.; Scarr, E.; McCullumsmith, R. Changes in cortical N-methyl-d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust. N. Z. J. Psychiatry 2016, 50, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, H.-J.; Wang, Y.-C.; Liou, Y.-J.; Lai, I.-C.; Chen, J.-Y. Association Analysis of the Genetic Variants of the N-Methyl D-Aspartate Receptor Subunit 2b (NR2b) and Treatment-Refractory Schizophrenia in the Chinese. Neuropsychobiology 2003, 47, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, R.A.; Fanger, C.M.; Anderson, D.R.; Sirivolu, V.R.; Paschetto, K.; Gordon, E.; Virginio, C.; Gleyzes, M.; Buisson, B.; Steidl, E.; et al. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS ONE 2016, 11, e0148129. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chen, X.; Xu, X.; Wu, R.; Zhao, J.; Hu, Z.; Xia, K. Significant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-d-aspartate receptor subunit gene (GRIN2A) and schizophrenia. Neurosci. Lett. 2006, 409, 80–82. [Google Scholar] [CrossRef]
- Mishra, N.; Kouzmitcheva, E.; Orsino, A.; Minassian, B.A. Chromosome 12p Deletion Spanning the GRIN2B Gene Presenting With a Neurodevelopmental Phenotype: A Case Report and Review of Literature. Child Neurol. Open 2016, 3, 2329048x16629980. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.-J.; Yu, Y.W.-Y.; Lin, C.-H.; Cheng, C.-Y.; Tsai, S.-J. Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr. Genet. 2001, 11, 219–222. [Google Scholar] [CrossRef]
- Ivanova, S.; Loonen, A.J.M.; Pechlivanoglou, P.; Freidin, M.B.; Al Hadithy, A.F.Y.; Rudikov, E.V.; Zhukova, I.; Govorin, N.V.; Sorokina, V.; Fedorenko, O.Y.; et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2012, 2, e67. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Loonen, A.J.; Bakker, P.R.; Freidin, M.B.; Ter Woerds, N.J.; Al Hadithy, A.F.; Semke, A.V.; Fedorenko, O.Y.; Brouwers, J.R.; Bokhan, N.A.; et al. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med. 2016, 4, 2050312116643673. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Loonen, A.J.M. Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding. Park. Dis. 2016, 2016, 6461907. [Google Scholar] [CrossRef] [Green Version]
- Davidson, L.; McGlashan, T.H. The Varied Outcomes of Schizophrenia. Can. J. Psychiatry 1997, 42, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Mazaeva, N.A. Schizophrenia in adolescence. Zhurnal Nevrol. Psikhiatrii Im. S. S. Korsakova 2015, 115, 20. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Coulon, N.; Godin, O.; Bulzacka, E.; Dubertret, C.; Mallet, J.; Fond, G.; Brunel, L.; Andrianarisoa, M.; Anderson, G.; Chereau, I.; et al. Early and very early-onset schizophrenia compared with adult-onset schizophrenia: French FACE-SZ database. Brain Behav. 2020, 10, e01495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abel, K.M.; Drake, R.; Goldstein, J.M. Sex differences in schizophrenia. Int. Rev. Psychiatry 2010, 22, 417–428. [Google Scholar] [CrossRef]
- Armada-Moreira, A.; Gomes, J.I.; Pina, C.C.; Savchak, O.K.; Gonçalves-Ribeiro, J.; Rei, N.; Pinto, S.; Morais, T.P.; Martins, R.S.; Ribeiro, F.F.; et al. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front. Cell. Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Cardis, R.; Cabungcal, J.-H.; Dwir, D.; Do, K.Q.; Steullet, P. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiol. Dis. 2018, 109 Pt A, 64–75. [Google Scholar] [CrossRef]
- Hu, C.; Chen, W.; Myers, S.J.; Yuan, H.; Traynelis, S.F. Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 2016, 132, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, S.J.; Yuan, H.; Kang, J.-Q.; Tan, F.C.K.; Traynelis, S.F.; Low, C.-M. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Research 2019, 8, 1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzystanek, M.; Asman, M.; Witecka, J.; Pałasz, A.; Wiaderkiewicz, R. Selected single-nucleotide variants in GRIN1, GRIN2A, and GRIN2B encoding subunits of the NMDA receptor are not biomarkers of schizophrenia resistant to clozapine: Exploratory study. Pharmacol. Rep. 2021, 73, 309–315. [Google Scholar] [CrossRef]
- Loonen, A.J.; Ivanova, S. Circuits regulating pleasure and happiness: Evolution and role in mental disorders. Acta Neuropsychiatr. 2018, 30, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.; Ivanova, S. The evolutionary old forebrain as site of action to develop new psychotropic drugs. J. Psychopharmacol. 2018, 32, 1277–1285. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Evolution of circuits regulating pleasure and happiness with the habenula in control. CNS Spectr. 2019, 24, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness in Schizophrenia: The Neurobiological Mechanism of Delusions. In Schizophrenia Treatment—The New Facets; Shen, Y.C., Ed.; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.S. On the Origins of Schizophrenia. Am. J. Psychiatry 2020, 177, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Elfving, B.; Müller, H.K.; Oliveras, I.; Østerbøg, T.B.; Rio-Alamos, C.; Sanchez-Gonzalez, A.; Tobena, A.; Fernandez-Teruel, A.; Aznar, S. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109669. [Google Scholar] [CrossRef] [PubMed]
- Musket, C.W.; Kuo, S.S.; Rupert, P.E.; Almasy, L.; Gur, R.C.; Prasad, K.; Wood, J.; Roalf, D.R.; Gur, R.E.; Nimgaonkar, V.L.; et al. Why does age of onset predict clinical severity in schizophrenia? A multiplex extended pedigree study. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2020, 183, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; de Pablo, G.S.; Shin, J.I.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 2021, 1–15. [Google Scholar] [CrossRef]
- Perkins, D.O.; Jeffries, C.D.; Do, K.Q. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol. Psychiatry 2020, 88, 326–336. [Google Scholar] [CrossRef] [PubMed]
Sample Size, n | 402 |
Gender, n (%) | Men: 256 (63.7%) Women: 146 (36.3%) |
Age, years, Me (Q1; Q3) | 41 (29; 53) |
Age at onset, years, Me (Q1; Q3) | 23 (19; 31) |
Duration of illness, years, Me (Q1; Q3). | 14 (7; 25) |
SNPs | Genotypes and Alleles | Early Onset (<18 y.o.) | Adult Onset (≥18 y.o.) | χ2 | p-Value |
---|---|---|---|---|---|
rs7206256 | AA | 31 (44.9%) | 112 (34.1%) | 6.279 | 0.043 * |
AG | 34 (39.3%) | 162 (49.4%) | |||
GG | 4 (5.8%) | 54 (16.5%) | |||
A | 96 (69.6%) | 386 (58.8%) | 5.497 | 0.020 * | |
G | 42 (30.4%) | 270 (41.2%) | |||
rs1345423 | AA | 22 (31.4%) | 128 (39.0%) | 1.809 | 0.405 |
AC | 36 (51.4%) | 158 (48.2%) | |||
CC | 12 (17.1%) | 42 (12.8%) | |||
A | 80 (57.1%) | 414 (63.1%) | 1.745 | 0.187 | |
C | 60 (42.9%) | 242 (36.9%) | |||
rs8049651 | AA | 5 (7.0%) | 25 (7.6%) | 1.288 | 0.525 |
AG | 35 (49.3%) | 139 (42.0%) | |||
GG | 31 (43.7%) | 167 (50.5%) | |||
A | 45 (31.7%) | 189 (28.5%) | 0.559 | 0.455 | |
G | 97 (68.3%) | 473 (71.5%) | |||
rs9989388 | AA | 5 (7.1%) | 15 (4.7%) | 1.049 | 0.592 |
AG | 23 (32.9%) | 120 (37.4%) | |||
GG | 42 (60.0%) | 186 (57.9%) | |||
A | 33 (23.6%) | 150 (23.4%) | 0.003 | 0.959 | |
G | 107 (76.4%) | 492 (76.6%) | |||
rs9788936 | AA | 49 (72.1%) | 204 (63.4%) | 3.154 | 0.207 |
AG | 19 (27.9%) | 109 (33.9%) | |||
GG | 0 (0%) | 9 (2.8%) | |||
A | 117 (86.0%) | 517 (80.3%) | 2.440 | 0.119 | |
G | 19 (14.0%) | 127 (19.7%) | |||
rs9921541 | AA | 4 (5.9%) | 13 (4.1%) | 1.005 | 0.605 |
AC | 21 (30.9%) | 115 (36.4%) | |||
CC | 43 (63.2%) | 188 (59.5%) | |||
A | 29 (21.3%) | 141 (22.3%) | 0.063 | 0.802 | |
C | 107 (78.8%) | 491 (77.7%) | |||
rs11646587 | AA | 5 (7.1%) | 21 (6.5%) | 0.737 | 0.692 |
AG | 26 (37.1%) | 138 (42.7%) | |||
GG | 39 (55.7%) | 164 (50.8%) | |||
A | 36 (25.7%) | 180 (27.9%) | 0.267 | 0.606 | |
G | 104 (74.3%) | 466 (72.1%) | |||
rs1650420 | AA | 8 (11.3%) | 56 (17.2%) | 2.788 | 0.248 |
AG | 38 (53.5%) | 142 (43.6%) | |||
GG | 25 (35.2%) | 128 (39.3%) | |||
A | 54 (38.0%) | 254 (39.0%) | 0.042 | 0.837 | |
G | 88 (62.0%) | 398 (61.0%) | |||
rs11644461 | AA | 25 (35.2%) | 143 (43.2%) | 6.760 | 0.034 * |
AG | 30 (42.3%) | 151 (45.6%) | |||
GG | 16 (22.5%) | 37 (11.2%) | |||
A | 80 (56.3%) | 437 (66.0%) | 4.767 | 0.030 * | |
G | 62 (43.7%) | 225 (34.0%) | |||
rs4782039 | AA | 38 (53.5%) | 190 (58.1%) | 0.915 | 0.633 |
AG | 31 (43.7%) | 124 (37.9%) | |||
GG | 2 (2.8%) | 13 (4.0%) | |||
A | 107 (75.4%) | 504 (77.1%) | 0.192 | 0.662 | |
G | 35 (24.6%) | 150 (22.9%) |
SNPs | Genotypes and Alleles | Early Onset (<18 y.o.) | Adult Onset (≥18 y.o.) | χ2 | p-Value |
---|---|---|---|---|---|
rs7313149 | AA | 49 (71.0%) | 192 (60.0%) | 4.705 | 0.095 |
AG | 20 (29.0%) | 115 (35.9%) | |||
GG | 0 (0%) | 13 (4.1%) | |||
A | 118 (85.5%) | 499 (78.0%) | 3.931 | 0.048 * | |
G | 20 (14.5%) | 141 (22.0%) | |||
rs2192970 | AA | 0 (0%) | 7 (2.2%) | 1.537 | 0.464 |
AG | 21 (30.4%) | 94 (29.2%) | |||
GG | 48 (69.6%) | 221 (68.6%) | |||
A | 21 (15.2%) | 108 (16.8%) | 0.066 | 0.798 | |
G | 117 (84.8%) | 563 (83.2%) | |||
rs10845838 | AA | 5 (7.1%) | 40 (12.3%) | 1.832 | 0.400 |
AG | 32 (45.7%) | 151 (46.5%) | |||
GG | 33 (47.1%) | 134 (41.2%) | |||
A | 42 (30.0%) | 231 (35.5%) | 1.562 | 0.212 | |
G | 98 (70.0%) | 419 (64.5%) | |||
rs10772715 | AA | 7 (10.0%) | 60 (18.3%) | 3.089 | 0.213 |
AG | 36 (51.4%) | 161 (49.2%) | |||
GG | 27 (38.6%) | 106 (32.4%) | |||
A | 50 (35.7%) | 281 (43.0%) | 2.495 | 0.115 | |
G | 90 (64.3%) | 373 (57.0%) | |||
rs1805481 | AA | 21 (30.9%) | 86 (27.0%) | 1.436 | 0.488 |
AC | 38 (55.9%) | 171 (53.8%) | |||
CC | 9 (13.2%) | 61 (19.2%) | |||
A | 80 (58.8%) | 343 (53.9%) | 1.083 | 0.299 | |
C | 56 (41.2%) | 293 (46.1%) |
Gene | SNPs | Genotypes and Alleles | OR | Cl (95%) | χ2 | p-Value |
---|---|---|---|---|---|---|
GRIN2A | rs7206256 | AA | 1.573 | 0.929–2.663 | 6.279 | 0.043 |
AG | 0.995 | 0.592–1.673 | ||||
GG | 0.312 | 0.109–0.893 | ||||
A | 1.599 | 1.078–2.372 | 5.497 | 0.020 | ||
G | 0.625 | 0.422–0.928 | ||||
GRIN2A | rs11644461 | AA | 0.715 | 0.419–1.218 | 6.760 | 0.034 |
AG | 0.872 | 0.519–1.464 | ||||
GG | 2.312 | 1.203–4.443 | ||||
A | 0.664 | 0.460–0.960 | 4.767 | 0.030 | ||
G | 1.505 | 1.041–2.176 | ||||
GRIN2B | rs7313149 | AA | 1.633 | 0.927–2.877 | 4.705 | 0.095 |
AG | 0.728 | 0.412–1.284 | ||||
GG | - | - | ||||
A | 1.667 | 1.002–2.775 | 3.931 | 0.048 | ||
G | 0.600 | 0.360–0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poltavskaya, E.G.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Kornetov, A.N.; Bokhan, N.A.; Ivanova, S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life 2021, 11, 997. https://doi.org/10.3390/life11100997
Poltavskaya EG, Fedorenko OY, Kornetova EG, Loonen AJM, Kornetov AN, Bokhan NA, Ivanova SA. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life. 2021; 11(10):997. https://doi.org/10.3390/life11100997
Chicago/Turabian StylePoltavskaya, Evgeniya G., Olga Yu. Fedorenko, Elena G. Kornetova, Anton J. M. Loonen, Alexander N. Kornetov, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2021. "Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms" Life 11, no. 10: 997. https://doi.org/10.3390/life11100997