Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Growth Conditions and Microscopy
2.2. Plasmid and Strain Construction
3. Results
3.1. Mutational Analysis Suggests That in Nitrogen-Depleted Medium, patX is Impaired in Cell–Cell Signaling and Acts Cell-Autonomously
3.2. In Nitrogen-Replete Medium, Either patS or patX Alone Can Promote Semiregular Pattern Formation
3.3. Instability of Conditional Mutants Overexpressing patS or hetN
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Meeks, J.C.; Elhai, J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 2002, 66, 94–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandeau de Marsac, N. Differentiation of hormogonia and relationships with other biological processes. In The Molecular Biology of Cyanobacteria; Advances in Photosynthesis and Respiration; Bryant, D.A., Ed.; Springer: Dordrecht, The Netherlands, 1994; Volume 1, pp. 825–842. [Google Scholar] [CrossRef]
- Herrero, A.; Stavans, J.; Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 2016, 40, 831–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan-Levy, R.N.; Hadas, O.; Summers, M.L.; Rücker, J.; Sukenik, A. Akinetes: Dormant cells of cyanobacteria. In Dormancy and Resistance in Harsh Environments; Lubzens, E., Cerda, J., Clark, M., Eds.; Springer: Berlin, Germany, 2010; pp. 5–27. [Google Scholar]
- Nürnberg, D.J.; Mariscal, V.; Parker, J.; Mastrolanni, G.; Flores, E.; Mullineaux, C.W. Branching and intercellular communication in the Section V cyanobacterium Mastigocladus laminosus, a complex multicellular prokaryote. Molec. Microbiol. 2014, 91, 935–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.W.; Gonzales, A.; Harwood, T.V.; Huynh, J.; Hwang, Y.; Park, J.S.; Trieu, A.Q.; Italia, P.; Pallipuram, V.K.; Risser, D.D. Dynamic localization of HmpF regulates type IV pilus activity and directional motility in the filamentous cyanobacterium Nostoc. punctiforme. Mol. Microbiol. 2017, 106, 252–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenes-Álvarez, M.; Olmedo-Verd, E.; Vioque, A.; Muro-Pastor, A.M. Identification of conserved and potentially regulatory small RNAs in heterocystous cyanobacteria. Front. Microbiol. 2016, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Muro-Pastor, M.I.; Reyes, J.C.; Florencio, F.J. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J. Biol. Chem. 2001, 276, 38320–38328. [Google Scholar] [CrossRef]
- Vázquez-Bermúdez, M.F.; Herrero, A.; Flores, E. 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett. 2002, 512, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Valladares, A.; Flores, E.; Herrero, A. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 2008, 190, 6126–6133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.X.; Jiang, Y.L.; He, Y.X.; Chen, Y.F.; Teng, Y.B.; Chen, Y.; Zhang, C.C.; Zhou, C.Z. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc. Natl. Acad. Sci. USA 2010, 107, 12487–12492. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Chen, H.; Bédu, S.; Ziarelli, F.; Peng, L.; Zhang, C.-C. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA 2005, 102, 9007–9012. [Google Scholar] [CrossRef] [Green Version]
- Picossi, S.; Flores, E.; Herrero, A. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genom. 2014, 15, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro-Pastor, A.M.; Olmedo-Verd, E.; Flores, E. All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 2006, 256, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehira, S.; Ohmori, M. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 2006, 188, 8520–8525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhai, J.; Khudyakov, I. Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide-containing protein (PatX). Mol. Microbiol. 2018, 110, 931–954. [Google Scholar] [CrossRef]
- Flores, E.; Picossi, S.; Valladares, A.; Herrero, A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 673–684. [Google Scholar] [CrossRef]
- Muro-Pastor, A.M.; Valladares, A.; Flores, E.; Herrero, A. Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol. Microbiol. 2002, 44, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, R.; Callahan, S.M. Temporal and spatial regulation of the four transcription start sites of hetR from Anabaena sp. strain PCC 7120. J. Bacteriol. 2010, 192, 1088–1096. [Google Scholar] [CrossRef] [Green Version]
- Risser, D.D.; Callahan, S.M. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. Proc. Natl. Acad. Sci. USA 2009, 106, 19884–19888. [Google Scholar] [CrossRef] [Green Version]
- Valladares, A.; Flores, E.; Herrero, A. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation. Mol. Microbiol. 2016, 99, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Roumezi, B.; Xu, X.; Risoul, V.; Fan, Y.; Lebrun, R.; Latifi, A. The Pkn22 kinase of Nostoc PCC 7120 is required for cell differentiation via the phosphorylation of HetR on a residue highly conserved in genomes of heterocyst-forming cyanobacteria. Front. Microbiol. 2020, 10, 3140. [Google Scholar] [CrossRef]
- Yoon, H.S.; Golden, J.W. Heterocyst pattern formation controlled by a diffusible peptide. Science 1998, 282, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Black, T.A.; Wolk, C.P. Analysis of a Het- mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J. Bacteriol. 1994, 176, 2282–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, C.C.; Ramaswamy, K.S.; Endley, S.; Scappino, L.A.; Golden, J.W.; Haselkorn, R. Suppression of heterocyst differentiation in Anabaena PCC 7120 by a cosmid carrying wild-type genes encoding enzymes for fatty acid synthesis. FEMS Microbiol. Lett. 1997, 151, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Higa, K.C.; Rajagopalan, R.; Risser, D.D.; Rivers, O.S.; Tom, S.K.; Videau, P.; Callahan, S.M. The RGSGR amino acid motif of the intercellular signalling protein, HetN, is required for patterning of heterocysts in Anabaena sp. strain PCC 7120. Mol. Microbiol. 2012, 83, 682–693. [Google Scholar] [CrossRef]
- Callahan, S.M.; Buikema, W.J. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol. Microbiol. 2001, 40, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Huang, X.; Zhao, J. Expression of hetN during heterocyst differentiation and its inhibition of hetR up-regulation in the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett. 2002, 517, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Mitschke, J.; Vioque, A.; Haas, F.; Hess, W.R.; Muro-Pastor, A.M. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc. Natl. Acad. Sci. USA 2011, 108, 20130–20135. [Google Scholar] [CrossRef] [Green Version]
- Muro-Pastor, A.M. The heterocyst-specific NsiR1 small RNA is an early marker of cell differentiation in cyanobacterial filaments. mBio 2014, 5, e01079-14. [Google Scholar] [CrossRef] [Green Version]
- Videau, P.; Oshiro, R.T.; Cozy, L.M.; Callahan, S.M. Transcriptional dynamics of developmental genes assessed with an FMN-dependent fluorophore in mature heterocysts of Anabaena sp. strain PCC 7120. Microbiology 2014, 160, 1874–1881. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, X. Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120. J. Bacteriol. 2005, 187, 8489–8493. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Golden, J.W. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 2001, 183, 2605–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Liu, D.; Lee, M.H.; Golden, J.W. patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J. Bacteriol. 2004, 186, 6422–6429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrales-Guerrero, L.; Mariscal, V.; Nürnberg, D.J.; Elhai, J.; Mullineaux, C.W.; Flores, E.; Herrero, A. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J. Bacteriol. 2014, 196, 3452–3460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco, C.C.; Risser, D.D.; Callahan, S.M. Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J. Bacteriol. 2006, 188, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Scappino, L.; Haselkorn, R. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc. Natl. Acad. Sci. USA 1992, 89, 5655–5659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Ni, S.; Kennedy, M.A. Crystal structure of Alr1298, a pentapeptide repeat protein from the cyanobacterium Nostoc sp. PCC 7120, determined at 2.1 Å resolution. Proteins 2020, 88, 1143–1153. [Google Scholar] [CrossRef]
- Liu, D.; Golden, J.W. hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC 7120. J. Bacteriol. 2002, 184, 6873–6881. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Risoul, V.; Byrne, D.; Champ, S.; Douzi, B.; Latifi, A. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120. Elife 2020, 9, e59190. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Olmedo-Verd, E.; Flores, E.; Herrero, A.; Muro-Pastor, A.M. HetR-dependent and -independent expression of heterocyst-related genes in an Anabaena strain overproducing the NtcA transcription factor. J. Bacteriol. 2005, 187, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- Borthakur, P.B.; Orozco, C.C.; Young-Robbins, S.S.; Haselkorn, R.; Callahan, S.M. Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 2005, 57, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Nakamura, Y.; Wolk, C.P.; Kuritz, T.; Sasamoto, S.; Watanabe, A.; Iriguchi, M.; Ishikawa, A.; Kawashima, K.; Kimura, T.; et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2001, 8, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, T.F.; Ramasubramanian, T.S.; Golden, J.W. Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J. Bacteriol. 1994, 176, 4473–4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, K.S.; Carrasco, C.D.; Fatma, T.; Golden, J.W. Cell-type specificity of the Anabaena fdxN-element rearrangement requires xisH and xisI. Mol. Microbiol. 1997, 23, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Pridmore, R.D. New and versatile cloning vectors with kanamycin-resistance marker. Gene 1987, 56, 309–312. [Google Scholar] [CrossRef]
- Black, T.A.; Cai, Y.; Wolk, C.P. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol. Microbiol. 1993, 9, 77–84. [Google Scholar] [CrossRef]
- Khudyakov, I.; Wolk, C.P. Evidence that the hanA gene coding for HU protein is essential for heterocyst differentiation in, and cyanophage A-4(L) sensitivity of, Anabaena sp. strain PCC 7120. J. Bacteriol. 1996, 178, 3572–3577. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.; Messing, J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 1982, 19, 259–268. [Google Scholar] [CrossRef]
- Elhai, J.; Vepritskiy, A.; Muro-Pastor, A.M.; Flores, E.; Wolk, C.P. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J. Bacteriol. 1997, 179, 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.P.; Wolk, C.P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J. Bacteriol. 1990, 172, 3138–3145. [Google Scholar] [CrossRef] [Green Version]
- Antonaru, L.A.; Nürnberg, D.J. Role of PatS and cell type on the heterocyst spacing pattern in a filamentous branching cyanobacterium. FEMS Microbiol. Lett. 2017, 364, fnx154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Y.; Chen, W.L.; Zhang, C.C. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology 2009, 155, 1418–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, A.; Flores, E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ. Microbiol. 2019, 21, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Dong, Y.; Zhao, J. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc. Natl. Acad. Sci. USA 2004, 101, 4848–4853. [Google Scholar] [CrossRef] [Green Version]
- Corrales-Guerrero, L.; Mariscal, V.; Flores, E.; Herrero, A. Functional dissection and evidence for intercellular transfer of the heterocyst-differentiation PatS morphogen. Mol. Microbiol. 2013, 88, 1093–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhou, F.; Wang, S.; Xu, X. Processing of PatS, a morphogen precursor, in cell extracts of Anabaena sp. PCC 7120. FEBS Lett. 2017, 591, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Popa, R.; Weber, P.K.; Pett-Ridge, J.; Finzi, J.A.; Fallon, S.J.; Hutcheon, I.D.; Nealson, K.H.; Capone, D.G. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007, 1, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.I.; Rutenberg, A.D. A storage-based model of heterocyst commitment and patterning in cyanobacteria. Phys. Biol. 2014, 11, 16001. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-J.; Lechno-Yossef, S.; Wolk, C.P.; Vieille, C. Cell-specific gene expression in Anabaena variabilis grown phototrophically, mixotrophically, and heterotrophically. BMC Genom. 2013, 14, 759. [Google Scholar] [CrossRef] [Green Version]
- Buikema, W.J.; Haselkorn, R. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev. 1991, 5, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, X. Manipulation of pattern of cell differentiation in a hetR mutant of Anabaena sp. PCC 7120 by overexpressing hetZ alone or with hetP. Life 2018, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain or Plasmid Reference | Derivation and/or Relative Characteristics | Source or |
---|---|---|
Anabaena Strains | ||
PCC 7120 | Wild type | S. Callahan |
7120PN | PpetE-hetN | [27] |
RIAM1238 | DR929; patX::Ω; Smr/Spr | This study |
RIAM1239 | DR931; ΔpatX::Ω; Smr/Spr | This study |
RIAM1241 | PN DR929; PpetE-hetN patX::Ω; Smr/Spr | This study |
RIAM1242 | PN DR931; PpetE-hetN ΔpatX::Ω; Smr/Spr | This study |
RIAM1243 | UHM114 DR931 (pAM1714); ΔpatS ΔpatX::Ω(pAM1714); Smr/Spr Nmr | This study |
RIAM1245 | PN DR931 DR1177; PpetE-hetN ΔpatX::Ω ΔpatS::C.CE3; Smr/Spr Emr | This study |
RIAM1248 | PN DR931 DR1177; PpetE-hetN ΔpatX::Ω ΔpatS::C.CE3; Smr/Spr Emr | This study |
RIAM1249 | PN DR1177; PpetE-hetN ΔpatS::C.CE3; Emr | This study |
RIAM1250 | PN DR1177; PpetE-hetN ΔpatS::C.CE3; Emr | This study |
UHM114 | ΔpatS | [43] |
Plasmids | ||
anp03226 | A patX (asl2332)-bearing bp 2805907 to 2813409 fragment of Anabaena PCC 7120 chromosome in the BamHI site of pUC18; Apr | [44] |
anp03869 | A patX (asl2332)-bearing bp 2803179 to 2811405 fragment of Anabaena PCC 7120 chromosome in the BamHI site of pUC18; Apr | [44] |
pAM504 | Shuttle vector for replication in E. coli and Anabaena; Kmr Nmr | [45] |
pAM684 | A source of the Spr Smr Ω cassette; Apr Spr/Smr | [46] |
pAM1035 | patS on a 3.3 kb chromosomal fragment in pBluescript II KS(-); Apr | [23] |
pK18 | pBR322-derived cloning vector; Kmr | [47] |
pRIAM780 | A 2.9 kb SalI-XmnI fragment containing 3′-end of alr233, asl2332 (patX), alr2331 and 3′-end of alr2330 from anp03869 ligated in SalI-SmaI sites of pK18; Kmr | This study |
pRIAM796 | Ω cassette inserted into internal ScaI site in patX ORF in pRIAM780; Kmr Spr/Smr | This study |
pRIAM860 | anp03226 derivative with an AfeI-SmaI fragment deleted; contains patX on remaining 4.65 kb insert; Apr | This study |
pRIAM917 | pRIAM780 with ScaI-DraI fragment containing most of patX ORF and 3′ UTR replaced with Ω cassette; Kmr Spr/Smr | This study |
pRIAM923 | A 4.9 kb chromosomal region (bp 2805907 to 2810809) with ScaI-DraI fragment containing most of patS ORF and 3′ UTR replaced with Ω cassette; reconstructed from pRIAM860 and pRIAM917; Kmr Spr/Smr | This study |
pRIAM925 | Same as pRIAM917, but the Ω cassette inserted into into internal ScaI site in patX ORF; reconstructed from pRIAM860 and pRIAM796; Kmr Spr/Smr | This study |
pRIAM929 | Insert from pRIAM925 moved into suicide vector pRL271; Cmr Emr Spr/Smr | This study |
pRIAM931 | Insert from pRIAM923 moved into suicide vector pRL271; Cmr Emr Spr/Smr | This study |
pRIAM1159 | Insert from pAM1035 moved in pK18 (probably as BamH-SalI fragment); Kmr | This study |
pRIAM1175 | C.CE3 Cmr Emr cassette excised with EcoICRI from pRL1567 and inserted into EcoRV-ScaI sites of pRIAM1159, replacing patS-bearing 0.38 kb chromosomal fragment; Kmr Cmr Emr | This study |
pRIAM1177 | Insert from pRIAM1175 moved into SacI-PstI sites of pRL278; Kmr Cmr Emr | This study |
pRL271 | sacB-containing suicide vector; Cmr Emr | [48] |
pRL278 | sacB-containing suicide vector; Nmr/Kmr | [48] |
pRL1567 | Source of C.CE3 Cmr Emr cassette; Apr Cmr Emr | [49] |
pUC19 | pBR322-derived cloning vector; Apr | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khudyakov, I.; Gladkov, G.; Elhai, J. Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120. Life 2020, 10, 326. https://doi.org/10.3390/life10120326
Khudyakov I, Gladkov G, Elhai J. Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120. Life. 2020; 10(12):326. https://doi.org/10.3390/life10120326
Chicago/Turabian StyleKhudyakov, Ivan, Grigory Gladkov, and Jeff Elhai. 2020. "Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120" Life 10, no. 12: 326. https://doi.org/10.3390/life10120326