Next Article in Journal / Special Issue
Approaches to the Origin of Life on Earth
Previous Article in Journal / Special Issue
DNA Movies and Panspermia
Life 2011, 1(1), 19-33; doi:10.3390/life1010019

The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

1,* , 1
1 Department of Geosciences and Penn State Astrobiology Research Center, The Pennsylvania State University, 220 Deike Building, University Park, PA 16802, USA 2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
* Author to whom correspondence should be addressed.
Received: 25 August 2011 / Revised: 14 September 2011 / Accepted: 11 November 2011 / Published: 18 November 2011
(This article belongs to the Special Issue Origin of Life - Feature Papers)
View Full-Text   |   Download PDF [2627 KB, uploaded 18 November 2011]   |   Browse Figures


On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total of about 1020 microbial cells could be supported through methanotrophy with the cells concentrated in regions of methane release.
Keywords: Archaea; methane; methanotrophy; Mars; subsurface biosphere Archaea; methane; methanotrophy; Mars; subsurface biosphere
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
MDPI and ACS Style

House, C.H.; Beal, E.J.; Orphan, V.J. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy. Life 2011, 1, 19-33.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


Cited By

[Return to top]
Life EISSN 2075-1729 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert