On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems
Abstract
:1. Introduction
2. A Lie Algebroid and Its Courant Reduction and Realization
- (i)
- The bracket on is -bilinear and skew-symmetric and satisfies the Jacobi identity;
- (ii)
- β for all and all smooth functions ();
- (iii)
- for all .
A Lie Group, the Hamilton Group Action and the Related Lie–Courant Algebroid Construction
3. Courant-Type Algebroids and the Related Structures
3.1. A Loop Group and the Related Hamiltonian Group Action
3.2. The Marsden–Weinstein Reduction and Related Courant Algebroid Structure
4. Remarks on the Courant-Type Algebroid Foliation and Related Hamiltonian Flows
5. The Loop Diffeomorphisms Group (), the Courant-Type Algebroid () and the Related Integrable Hamiltonian Flows
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mackenzie, K.C.H. Lie algebroids and Lie pseudoalgebras. Bull. Lond. Math. Soc. 1995, 27, 97–147. [Google Scholar] [CrossRef]
- Mackenzie, K. Lie Groupoids and Lie Algebroids in Differential Geometry; London Mathematical Society Lecture Note Series 124; Cambridge University Press: Cambridge, UK, 1987; MR 89g:58225. [Google Scholar]
- Kinyon, M.K.; Weinstein, A. Leibniz Algebras, Courant Algebroids, and Multiplications on Reductive Homogeneous Spaces. Am. Math. 2000, 123, 525–550. [Google Scholar] [CrossRef]
- Garcia-Beltran, D.; Vallejo, J.A.; Vorobjev, Y. On Lie Algebroids and Poisson Algebras. SIGMA 2012, 8, 006. [Google Scholar] [CrossRef]
- Lorenzoni, P.; Perletti, S. Integrable hierarchies, Frö licher–Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds. Nonlinearity 2023, 36, 6925–6990. [Google Scholar] [CrossRef]
- de Leon, M.; Marrero, J.C.; Marttinez, E. Lagrangian submanifolds and dynamics on Lie algebroids. arXiv 2004, arXiv:0407528v1. [Google Scholar]
- Jimenez, V.M.; de Leon, M. The evolution equation: An application of grupoids to material evolution. J. Geom. Mech. 2022, 14, 331–348. [Google Scholar] [CrossRef]
- Grabovski, K.; Grabovski, J.; Kuś, M.; Marmo, G. Information geometry on groupoids: The case of singular metric. arXiv 2020, arXiv:2006.07621v1. [Google Scholar]
- Grabowski, J.; Marmo, G.; Michor, P.W. Homology and modular classes of Lie algebroids. arXiv 2005, arXiv:0310072v4. [Google Scholar] [CrossRef]
- Kubarski, J. The Chern-Weil Homomorphism of Regular Lie Algebroids; Publications Departement Mathematiques, University of Lyon 1: Villeurbanne, France, 1991. [Google Scholar]
- Mishchenko, A.S.; Oliveira, J.R. Sullivan constructions for transitive Lie algebroids—Smooth case. arXiv 2017, arXiv:1709.07494v1. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Weinstein, A.; Xu, P. Manin triples for Lie Bialgebroids. J. Diff. Geom. 1997, 45, 547–574. [Google Scholar] [CrossRef]
- Ševera, P.; Geneva, U.; Valach, F. Courant Algebroids, Poisson–Lie T-Duality, and Type II gravities. Commun. Math. Phys. 2020, 375, 307–344. [Google Scholar] [CrossRef]
- Bressler, P.; Chernov, A. Courant algebroids. Trans. Am. Math. Soc. 2002, 85, 181. [Google Scholar] [CrossRef]
- Grabovski, J.; Ravanpak, Z. Nonassociative analogs of Lie groupoids. arXiv 2022, arXiv:2101.07258v2. [Google Scholar] [CrossRef]
- Grabovska, K.; Grabowski, J. Remarks on generalized Lie algebroids and related concepts. arXiv 2017, arXiv:1701.07233v1. [Google Scholar]
- Mishchenko, A.S. Transitive Lie algebroids—Categorical point of view. arXiv 2010, arXiv:1006.4839. [Google Scholar] [CrossRef]
- Mishchenko, A.S.; Xiaoyu, L.; Gasimov, V. Mackenzie obstruction for the existence of a transitive Lie algebroid. Russ. J. Math. Phys. 2014, 21, 544–548. [Google Scholar]
- Mishchenko, A.S.; Xiaoyu, L. The existence and classification of couplings between Lie algebroids and tangent bundles. Topol. Its Appl. 2016, 200, 1–18. [Google Scholar]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Benjamin Cummings: Buffalo, NY, USA, 2008. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Adler, M. On a trace for formal pseudodifferential operators and the symplectic structure for the KdV type equations. Invent. Math. 1979, 50, 219–248. [Google Scholar] [CrossRef]
- Symes, W. Systems of Toda type, inverse spectral problems and representation theory. Invent. Math. 1978, 59, 13–53. [Google Scholar] [CrossRef]
- Kostant, B. The solution to a generalized Toda lattice and representation theory. Adv. Math. 1979, 39, 195–338. [Google Scholar] [CrossRef]
- Ovando, G.P. The Adler-Kostant-Symes scheme in physics. arXiv 2008, arXiv:0805.2963v1. [Google Scholar]
- Babelon, O.; Viallet, C.M. Hamiltonian structures and Lax equations. Phys. Lett. B 1990, 237, 411–416. [Google Scholar] [CrossRef]
- Babelon, O.; Bernard, D.; Talon, M. Introduction to Classical Integrable Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hentosh, O.E.; Prykarpatskyy, Y.A.; Balinsky, A.A.; Prykarpatski, A.K. Geometric structures on the orbits of loop diffeomorphism groups and related heavenly type Hamiltonian systems.: I. Ukr. Math. J. 2023, 74, 1175–1208. [Google Scholar] [CrossRef]
- Hentosh, O.E.; Prykarpatskyy, Y.A.; Balinsky, A.A.; Prykarpatski, A.K. Geometric structures on the orbits of loop diffeomorphism groups and related heavenly type Hamiltonian systems.: II. Ukr. Math. J. 2023, 74, 1348–1368. [Google Scholar] [CrossRef]
- Hentosh, O.E.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K. Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle. J. Geom. Phys. 2017, 120, 208–227. [Google Scholar] [CrossRef]
- Hentosh, O.Y.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K. Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics. SIGMA 2019, 15, 079. [Google Scholar] [CrossRef]
- Plebański, J. Some solutions of complex Einstein equations. J. Math. Phys. 1975, 16, 2395–2402. [Google Scholar] [CrossRef]
- Courant, T.J. Dirac manifolds. Trans. Am. Soc. 1990, 319, 631–661. [Google Scholar] [CrossRef]
- Godbillon, C. Geomètrie Differentielle et Mécanique Analytique; Hermann: Paris, France, 1969. [Google Scholar]
- Kolar, I.; Michor, P.W.; Slovak, J. Natural Operations in Differential Geometry; Springer: Berlin, Germany, 1993. [Google Scholar]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific Publisher: New Jersey, NJ, USA, 2011. [Google Scholar]
- Semenov-Tian-Shansky, M.A. What is a classical R-matrix? Func. Anal. Appl. 1983, 17, 259–272. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Błaszak, M. Towards a Multi-Hamiltonian Theory of (2+1)-Dimensional Field Systems. In Multi-Hamiltonian Theory of Dynamical Systems; Texts and Monographs in Physics; Springer: Berlin, Germany, 1998. [Google Scholar] [CrossRef]
- Błaszak, M. Classical R-matrices on Poisson algebras and related dispersionless systems. Phys. Lett. A 2002, 297, 191–195. [Google Scholar] [CrossRef]
- Presley, A.; Segal, G. Loop Groups; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Marsden, J.; Weinstein, A. Reduction and symplectic manifolds with symmetry. Rep. Math. Phys. 1974, 5, 121–130. [Google Scholar] [CrossRef]
- Prykarpatski, A.K. Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems. Universe 2022, 8, 288. [Google Scholar] [CrossRef]
- Prykarpatsky, Y.A.; Samoylenko, A.M.; Prykarpatsky, A.K. The geometric properties of reduced symplectic spaces with symmetry, their relationship with structures on associated principle fiber bundles and some applications. Part 1. Opusc. Math. 2005, 25, 287–298. [Google Scholar]
- Prykarpatsky, Y.A. Canonical reduction on cotangent symplectic manifolds with group action and on associated principal bundles with connections. J. Nonlinear Oscil. 2006, 9, 96–106. [Google Scholar] [CrossRef]
- Ferapontov, E.V.; Mokhov, O.I. On the Hamiltonian representation of the associativity equations. In Algebraic Aspects of Integrable Systems; vBirkhauser: Boston, MA, USA, 1997; Volume 26, pp. 75–91. [Google Scholar]
- Reyman, A.; Semenov-Tian-Shansky, M. Integrable Systems; The Computer Research Institute Publ.: Izhvek, Moscow, 2003. [Google Scholar]
- Novikov, S.P.; Manakov, S.V.; Pitaevski, L.P.; Zakharov, V.E. Theory of Solitons. The Inverse Problem Method; Plenum: New York, NY, USA, 1984. [Google Scholar]
- Newell, A.C. Solitons in Mathematics and Physics; CBMS-NSF, Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1987. [Google Scholar]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons; Elsevier: Amsterdam, The Netherlands, 1982; Volume 1. [Google Scholar]
- Avan, J.; Babelon, O.; Talon, M. Construction of classical R-matrices for the Toda and Calogero models. Alg. Anal. 1994, 6, 67. [Google Scholar]
- Arutyunov, G.E.; Medvedev, P.B. Generating equation for R-matrices related to the dynamical systems of Calogero type. Phys. Lett. 1996, A223, 66–74. [Google Scholar] [CrossRef]
- Sklyanin, E.K. Quantum variant of the inverse scattering transform method. Proc. LOMI 1980, 95, 55–128. [Google Scholar]
- Tsyplyaev, S.A. Commutation relations for transition matrix in classical and quantum inverse scatering method. Theor. Math. Phys. 1981, 48, 24–33. [Google Scholar]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar]
- De Sole, A.; Kac, V.G.; Turhan, R. A NewApproach to the Lenard–Magri Scheme of Integrability. Comm. Math. Phys. 2014, 330, 107–122. [Google Scholar] [CrossRef]
- Lauricella, G. Sulle funzioni ipergeometriche a piu variabili Rend. Circ. Mat. Palermo 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Dubrovin, B. Integrable systems in topological field theory. Nucl. Phys. B 1992, 379, 627–689. [Google Scholar] [CrossRef]
- Dubrovin, B. Geometry on 2D topological field theories. In Lecture Notes in Mathematics, Proceedings of the Integrable Systems and Quantum Groups, Montecatini Terme, Italy, 14–22 June 1993; Springer: Berlin, Germany, 1996; Volume 1620, pp. 120–348. [Google Scholar]
- Manin, Y.I. Frobenius Manifolds, Quantum Cohomology and Moduli Spaces; AMS: Providence, RI, USA, 1999. [Google Scholar]
- Manin, Y.I. F-manifolds with flat structure and Dubrovin’s duality. Adv. Math. 2005, 198, 5–26. [Google Scholar] [CrossRef]
- Dijkgraaf, R.; Verlinde, H.; Verlinde, E. Topological strings in d < 1. Nucl. Phys. B 1991, 352, 59–86. [Google Scholar]
- Witten, E. On the structure of topological phase of two-dimensional gravity. Nucl. Phys. B 1990, 340, 281–332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatski, A.K.; Bovdi, V.A. On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems. Symmetry 2024, 16, 76. https://doi.org/10.3390/sym16010076
Prykarpatski AK, Bovdi VA. On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems. Symmetry. 2024; 16(1):76. https://doi.org/10.3390/sym16010076
Chicago/Turabian StylePrykarpatski, Anatolij K., and Victor A. Bovdi. 2024. "On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems" Symmetry 16, no. 1: 76. https://doi.org/10.3390/sym16010076