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Abstract: Poisson structures related to affine Courant-type algebroids are analyzed, including those
related with cotangent bundles on Lie-group manifolds. Special attention is paid to Courant-type
algebroids and their related R structures generated by suitably defined tensor mappings. Lie–Poisson
brackets that are invariant with respect to the coadjoint action of the loop diffeomorphism group are
created, and the related Courant-type algebroids are described. The corresponding integrable Hamil-
tonian flows generated by Casimir functionals and generalizing so-called heavenly-type differential
systems describing diverse geometric structures of conformal type in finite dimensional Riemannian
manifolds are described.
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coadjoint orbits; Hamiltonian systems; invariants; integrability

1. Introduction

As mathematical object Lie algebroids [1,2] are an unrecognized part of the folklore of
differential geometry. They have been introduced repeatedly in differential geometry since
the early 1950s, as well as in physics and algebra, under a wide variety of names, chiefly as
infinitesimal invariants associated with geometric structures. In connection theory, they
have been used as a means of treating de Rham cohomology with algebraic methods,
as invariants of foliations and pseudogroups of various types, in symplectic and Poisson
geometry and in a more algebraic setting as algebroids of differential operators associated
with vector bundles and withinfinitesimal actions of Lie groups. Algebroid structures
have recently found diverse applications in the geometry of Poisson [3–5] and Lagrangian
manifolds [6] in mechanical sciences [7] and other branches of modern applied and the-
oretical research. We wish to highlight the original work reported in [8] with respect to
so-called contrast (potential) functions in statistical and information geometry provided by
Lie groupoids and Lie algebroids. Important theoretical aspects of homology and modular
classes were studied in [9]. It is also worth mentioning interesting aspects of algebroid
theory studied in [10] concerning the homomorphism Chern-Weyl transformations of al-
gebroids and in [11] concerning the cohomology isomorphism subject to the piecewise
morphism restriction of transitive Lie algebroids. New aspects of Lie algebroid theory
were demonstrated in [3], where the authors showed how some Lie algebroid operations,
in particular the Courant brackets on the doubles of Lie bialgebroids, can be realized in a
natural way in the tangent spaces of reductive homogeneous spaces. A special realization of
the doubled Lie algebroid was proposed in [12] and named for T.J. Courant, who implicitly
devised the standard prototype of Courant algebroids through his discovery of a skew
symmetric bracket on the doubled tangent–cotangent bundle (called the Courant bracket
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today) and deeply studied so-called Dirac manifolds and related Dirac structures. Here,
we would like to mention Courant’s characteristic theorem concerning dual Lie algebroid
bundles. The dual bundle of a Lie algebroid is a Poisson manifold such that the Poisson
bracket of linear functions remains linear. Furthermore, any vector bundle with such a
Poisson bundle is a dual to a Lie algebroid, and its Poisson structure is inherited as such.
Motivated by these results, the authors of [13] analyzed many interesting properties of
Courant algebroids and the related Poisson–Lie T duality; in particular, they extended
the known results to a much wider class of dualities, including cases with gauging, in
addition to presenting an illustration of the use of the formalism to provide new classes of
special solutions to modified type-two supergravity equations in symmetric spaces. Other
interesting properties of Courant algebroids were studied in [12,14–19] within which the
authors proposed a Lie algebroid on the loop space pinned down to the Lie algebroid
on the manifold. The authors conjectured that this construction, as applied to the Dirac
structure, should give rise to the Lie algebroid of symmetries specifying special σ models.
A strikingly new face of algebroid theory related to the construction of integrable hierar-
chies was recently presented in [5]. The authors observed interesting connections between
algebroid structures and Frölicher–Nijenhuis bicomplexes and Lauricella biflat F manifolds,
which string theorists believe could have important applications in topological quantum
field theory.

Inspired in part by these algebro-theoretical studies of differential geometric structures
associated with Courant algebroids, we observed that some of their interesting properties
can be studied in more detail both from symplectic and Lie-algebraic points of view. There-
fore, we provided an instructive example of a Courant algebroid, considering a semisimple
Lie group and its Lie algebra at the unity element, consisting of the corresponding left
invariant vector fields. Within this algebraic setting, rigged with the canonical symplectic
structure mapping as an anchor, we considered the cohomology group of this Lie group
and showed that the related Lie algebroid reduces to the Courant algebroid, similarly to
the result reported in [3]. Moreover, this construction proved to be naturally generalizable
to cases in which the canonical symplectic mapping is replaced by some Lie algebra ho-
momorphism that can be realized within the well-known Marsden–Weinstein reduction
scheme [20–22] applied to a suitably constructed Hamiltonian group action. Another ap-
proach to constructing Courant algebroids with rich differential–geometric properties is
based on the effective Adler–Kostant–Symes-type scheme [23–26] for the construction of
Poisson structures in coadjoint orbits, in particular its version based on the R-structure
approach associated with a specially defined tensor mapping and the related canonical
Lie–Poisson bracket in the dual space.

We also paid attention to some differential geometric and symplectic properties of a
special Courant-type algebroid foliation and analyzed the structure of related Hamiltonian
flows. We showed that the Courant-type algebroid foliations, equipped with two compati-
ble external differentials, generate a finite set of commuting Hamiltonian flows, realizing a
classical Magri-type recursion scheme. As we were interested in Courant-type algebroids
related to the loop diffeomorphism group, we constructed compatible pairs of Poisson
brackets and the related integrable Hamiltonian flows within the classical Adler–Kostant–
Symes scheme [23–25,27,28] the, suitably generalizing [29–32] so-called [33] heavenly-type
differential systems, describing diverse geometric structures of the conformal type on
finite-dimensional Riemannian manifolds.

2. A Lie Algebroid and Its Courant Reduction and Realization

We first recall the classical definition of a Lie algebroid and its reduction to the Courant
algebroid first suggested in [3].

Definition 1. Let M be a manifold. A Lie algebroid ((E; [[., .]], ρ, M)) on M or with a base of M is
a vector bundle (E→ M), together with a bracket ([[., .]] : Γ(E)× Γ(E) → Γ(E) on the module



Symmetry 2024, 16, 76 3 of 20

Γ(E)) of global sections of E and a vector bundle morphism (ρ : E→ T(M)) from E to the tangent
bundle (T(M)) of M called the anchor of E such that

(i) The bracket on Γ(E) is R-bilinear and skew-symmetric and satisfies the Jacobi identity;
(ii) [[α, f β]] = f [[α, β]] + ρ(α) f β for all α, β ∈ Γ(E) and all smooth functions ( f ∈ D(M));
(iii) ρ([[α, β]]) = [ρ(α), ρ(β)] for all α, β ∈ Γ(E).

The anchor (ρ) ties the bracket on Γ(E) to the vector field structure on M as a module
over D(M), and the algebra of smooth functions is f : M→ R.

Consider the product (T(M)n T∗(M)) of tangent T(M) and its cotangent (T∗(M))
bundles over the manifold (M). Then, the canonical Courant bracket [34] on the D(M)
module (A(M) := T∗(M)× T(M) ' (T(M)× T∗(M))∗) is defined as

[[(α, a), (β, b)]] := (Laβ− Lbα + 1
2 d(α(b)− β(a)), [a, b]) (1)

for any (α, a), (β, b) ∈ T∗(M)× T(M), satisfying [20,35,36] the usual Jacobi identity.

Definition 2. The bundle A(M) = T∗(M)× T(M), jointly with the bracket (1) and the natural
morphism projection mapping (ρ : A(M)→ T(M)) is called the Courant algebroid.

Let us now assume that the cotangent space (T∗(M)) is endowed with its own Poisson
structure (P : T∗(M)→ T(M)). Then, by definition, a := Pα, b := Pβ ∈ −(T(M)), and one
can easily observe that the Courant bracket (1) becomes its second-term identity, reducing
to the next bracket in the cotangent space (T∗(M)):

[[α, β]] = LPαβ− LPβα + 1
2 d(α(Pβ)− β(Pα)

= iPβdα− iPαdβ− 1
2 d(α(Pβ)− β(Pα)

(2)

for any α, β ∈ Λ1(M), satisfying the Jacobi identity. Thus, the triple (T∗(M); [[·, ·]], P)
becomes a Lie algebroid with anchor P : T∗(M)→ T(M), which is considered a Lie algebra
morphism:

P[[α, β]] = [Pα, Pβ], (3)

which is satisfied for any α, β ∈ T∗(M) ' Λ1(M).

A Lie Group, the Hamilton Group Action and the Related Lie–Courant Algebroid Construction

As an instructive example of the construction described above, we consider a semisim-
ple Lie group (G) and its Lie algebra (G ' Te(G)) at the unity element (e ∈ G) consisting
of the left invariant vector fields on G. Assume that [20,21,28,36,37] Ω : G → G∗ is a
symplectic structure on G, allowing for the construction of the adjoint left-invariant vector
fields as Xα := Ω−1α, Xβ := Ω−1β ∈ G, subject to which the related Poisson bracket—

[[α, β]] := i[Xα ,Xβ ]
Ω (4)

—satisfies the Jacobi identity. The latter, in particular, means that the constructed object
((G∗; [[., .]], Ω−1, G)) is also a reduced Lie algebroid. Moreover, the Lie bracket (4), owing to
the Cartan representation of the Lie derivative (LX = iXd + diX , X ∈ G), [20,21,35,36] can
be rewritten as
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[[α, β]](Z) =
(

i[Xα ,Xβ ]
Ω
)
(Z) = [LXα , iXβ

]Ω(Z)

= LXα iXβ
Ω(Z)− iXβ

LXα Ω(Z)

= iXα diXβ
Ω(Z) + d

(
iXα iXβ

Ω
)
(Z)− iXβ

iXα dΩ(Z)− iXβ
diXα Ω(Z)

= iXα diXβ
Ω(Z)− iXβ

diXα Ω(Z) + d
(
Ω(Xβ, Xα)

)
(Z)

= XαΩ(Xβ, Z)− ZΩ(Xβ, Xα)−Ω(Xβ, [Xα, Z])− XβΩ(Xα, Z) + ZΩ(Xα, Xβ)+

+ Ω(Xα, [Xβ, Z]) + d
(
Ω(Xβ, Xα)

)
(Z)

= −Ω(Xβ, [Xα, Z]) + Ω(Xα, [Xβ, Z])− d
(
Ω(Xα, Xβ)

)
(Z)

=
(

ad∗Xβ
(iXα Ω)− ad∗Xα

(
iXβ

Ω
))

(Z)− d
(
Ω(Xα, Xβ)

)
(Z)

=
(

ad∗Ω−1β
α− ad∗Ω−1α

β
)
(Z)− 1/2d

(
α(Ω−1β)− β(Ω−1α)

)
(Z),

(5)

where we made use of the invariance conditions (Zα(X) = 0 = Zβ(X)) for arbitrary
α, β ∈ G∗ and X, Z ∈ G. Furthermore, ad∗ : G × G∗ → G∗ denotes the natural coadjoint
action of the Lie algebra (G) in the adjoint space (G∗). The obtained expression (5) on G∗
can be rewritten as

[[α, β]] = ad∗ρ(β)α− ad∗ρ(α)β−
1
2 d[α(ρ(β))− β(ρ(α))], (6)

where ρ = Ω−1 : G∗ → G denotes the corresponding anchor mapping the subject to
the reduced Courant–Lie algebroid (G∗; [[., .]], ρ, G). Assume now that we are given a Lie
algebroid (G∗h ; [[., .]], ρh, Gh) whose anchor (ρh : G∗ → G) is a Lie algebra homomorphism
not necessarily related to a symplectic structure on Gh and a priori satisfying the Poisson
bracket (6). Then, our inverse problem consists of describing at least sufficient conditions
on the anchor (ρh : G∗ → G) under which the bracket (6) satisfies the Jacobi condition.

As a simple guiding construction for our Courant algebroids, let us consider the
cohomology group (H1(G;C)) of the Lie group (G) and observe that for any
{α}, {β} ∈ H1(G;C), α, β ∈ G∗, the Poisson bracket (6) reduces to the next Poisson bracket,

[[{α}, {β}]] = {ad∗ρ(β)α− ad∗ρ(α)β}, (7)

on H1(G;C), satisfying the Jacobi condition. Thus, the cohomology group (H1(G;C))
is simultaneously the Lie algebra with respect to the Lie product (7), satisfying the in-
duced property:

Ω−1 → Ω−1
h : H1(G;C)→ G/H ' T(G/H),

where H ⊂ G denotes the normal Hamiltonian subgroup of G, whose Lie algebra (H ⊂ G)
consists of the Hamiltonian shifts (Ω(h) ∈ H) for all closed elements (h ∈ G∗, dh = 0). The
latter makes it possible to construct the reduced Lie algebroid (T∗(Gh); [[., .]]h, ρh, Gh) with
the following Lie bracket

[[α̃, β̃]]h = ad∗
ρh(β̃)

α̃− ad∗ρh(α̃)
β̃ (8)

for any α̃, β̃ ∈ T∗(Gh), where Gh := G/H, and the anchor is ρh := Ω−1
h : T∗(Gh)→ G/H.

3. Courant-Type Algebroids and the Related R Structures

In what follows, we deal with the semidirect product-bundle Lie algebra
(A∗(M) := T(M)n T∗(M)), whose Lie product is defined as

[(a, α), (b, β)] := ([a, b], ad∗b α− ad∗a β) (9)
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for any (a, α), (b, β) ∈ A∗(M), satisfying the Jacobi identity. Moreover, the Lie algebra
(A∗(M)) proves to be metrized [38,39] with respect to the dual ad-invariant pairing:

((a, α)|(b, β)) := α(b) + β(a), (10)

and as for arbitrary (α, a), (β, b) and (c, γ) ∈ A∗(M), the identity

([(a, α), (b, β)]|(c, γ)) = (a, α)|[(b, β), (c, γ)]) (11)

holds. Now, we take into account that the cotangent space (A(M)∗ ' T(M)× T∗(M))
possesses the canonical Lie–Poisson structure defined by means of the following bracket

[[((l, p)|X), ((l, p)|Y)]]Lie = ((l, p)|[X, Y]), (12)

for all X, Y ∈ A(M)∗ and any fixed element ((l, p) ∈ A(M)). To construct a Courant-type
algebroid (A(M)), let us take a tensor element (r ∈ A∗(M) ⊗ A∗(M)) jointly with the
related linear mapping (r : A(M) → A∗(M)) and define the following bracket in the
bundle A(M) for any (α, a), (β, b) ∈ A(M):

[[(α, a), (β, b)]]r := ad∗r((β,b))(α, a)− ad∗r((α,a))(β, b) (13)

The following proposition describing the conditions to be imposed on the tensor element
holds:

r ∈ A∗(M)⊗A∗(M).

Proposition 1. Let a tensor element (r ∈ A∗(M) ⊗ A∗(M)) allow for direct sum splitting:

r = k⊕ η, where k ∈ A∗(M)
Sym
⊗ A∗(M) is its symmetric non-degenerate part and

η ∈ A∗(M) ∧ A∗(M) is its antisymmetric non-degenerate part. If the related mapping
(D := k ◦ η−1 : A∗(M)→ A∗(M)) is a derivation of the algebra A∗(M), that is,

D[(a, α), (b, β)] = [D(a, α), (b, β)] + [(a, α), D(b, β)] (14)

for any (a, α), (b, β) ∈ A∗(M), then the mapping ρr = pr1 ◦ r : A(M)→ T(M)

ρr[[(α, a), (β, b)]]r = [ρr(α, a), ρr(β, b)] (15)

defines a Lie algebra homomorphism, and the triple (A(M); [[., .]], ρr) is a Courant-type algebroid.

In addition, the following important corollaries are inferred from the reasoning pre-
sented above: if the invertible tensor (r ∈ A(M)⊗A(M)) satisfies the formulated condi-
tions (14) and (15), then the corresponding triple (A(M)∗, [[·, ·]], ρ) is a generalized Courant-
type algebroid with the related anchor morphism (ρ : A(M)∗ → T(M)) defined by means of
the composition (ρ = pr1 ◦ r) with the projection mapping (pr1 : T(M)× T∗(M)→ T(M))
on the first component. Moreover, the following deformed commutator structure deter-
mines the corresponding R structure on A(M), R = D−1 for any (a, α), (b, β) ∈ A(M),
subject to which the second Lie bracket ([[·, ·]]D) on A(M) also satisfies the Jacobi identity.

[[(a, α), (b, β)]]R := [[R(a, α), (b, β)]] + [[(a, α), R(b, β)]] (16)

The latter makes it possible to construct the deformed Lie–Poisson bracket in the space
(A(M)∗) for all X, Y ∈ A(M) and any fixed element ((l, p) ∈ A(M)∗), subject to which
the Casimir functionals of the Lie bracket (12) naturally generate [3,5,28,37–41] an infinite
hierarchy of commuting, completely integrable Hamiltonian systems.

[[((l, p)|X), ((l, p)|Y))]]R = ((l, p)|[[X, Y]]R) (17)
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Below, we present the realization of the scheme described above and construct a
Courant algebroid in the double bundle (G̃∗ × G̃) over the loop group (G̃ = {C ⊃ S1 → G})
related [42] to a semisimple Lie group (G).

3.1. A Loop Group and the Related Hamiltonian Group Action

Now, consider a semisimple matrix Lie group (G), where G̃ := G̃+ × G̃−is the prod-
uct of the loop subgroups (G̃+ and G̃) defined by the continuous loop-group mappings
({C ⊃ S1 → G}) holomorphically extended on the interior (D1

+ ⊂ C) and the exterior
(D1
− ⊂ C) of the centrally located unit disk (D1 ⊂ C1), respectively, such that for any

g̃(λ) ∈ G̃+, λ ∈ D1
−, limλ→∞ g(λ) = Id ∈ G̃−. There exists a Lie subalgebra splitting

G̃ ' G̃+ ⊕ G̃− (18)

in the direct sum of the subalgebras (G̃±) of the left-invariant holomorphic vector fields of
the subgroups (G̃±) in domains D1

± ⊂ C1, where for any a(λ) ∈ G̃−, the limλ→∞ a(λ) = 0.
Based on the usual approach [37,39], one constructs the centrally extended loop Lie algebra
(G̃ := ∏

x∈R/{2πR}
G̃x ⊕C) jointly with the adjoint loop group (Ĝ := ∏

x∈R/{2πR}
G̃x) action,

which is defined as
g : (S, c)→ (gSg−1, c + (g−1∂g/∂x|S)). (19)

for any g ∈ Ĝ, where (T, c) ∈ Ĝ, and (·|·) : Ĝ × Ĝ → C is the Killing-type non-degenerate
symmetric bilinear form on G̃:

(A|B) := res
∫ 2π

0
tr(A(x; λ)B(x; λ)) = (B|A), (20)

for any A, B ∈ Ĝ, where "tr" is the usual matrix trace, allowing for the useful identification
of Ĝ∗ ' Ĝ. The bilinear form (20) carries the hereditary property of ad invariance, that is,
(A|[B, C]) = ([A, B]|C) for any elements (A, B and C ∈ Ĝ). In the canonically symplectic
functional-phase space (M := T∗(Ĝ) ' Ĝ × Ĝ∗), one can construct the corresponding
Liouville 1-form,

α(1)(S, c; l, k) = (l|dS) + kdc, (21)

whose exterior derivative gives the symplectic structure on the constructed functional
manifold (M):

ω(2)(S, c; l, k) := dα(1)(S, c; l, k) = (dl| ∧ dS) + dk ∧ dc. (22)

As in (19), we extend the group Ĝ action in the whole phase space (M), as by definition,

g : (l, k)→ (glg−1 − k∂g/∂xg−1, k) (23)

for any (l, k) ∈ Ĝ∗ and g ∈ Ĝ, representing the coadjoint loop group Ĝ action in the adjoint
linear space (Ĝ∗). The following lemma is important for what follows.

Lemma 1. The Ĝ-group actions (19) and (23) in the symplectic phase space (M) are symplectic
and Hamiltonian.

Proof. It is easy to verify that the canonical Liouville 1-form (21) on the manifold (M) is
Ĝ-invariant:

g∗α(1)(S, c; l, k) = (glg−1 − k∂g/∂xg−1|gdSg−1) + k(dc + (g−1∂g/∂x|dS))

= (glg−1 + gdSg−1)− k(∂g/∂xg−1|gdSg−1)

+ kdc + k(g−1∂g/∂x|dS) = (l|dS) + kdc = α(1)(S, c; l, k).

(24)
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According to (24), owing to the expression (22), one obtains the symplectic-form invariance

g∗ω(2)(S, c; l, k) = ω(2)(S, c; l, k) (25)

for any element ((S, c; l, k) ∈ M). To define the Hamiltonian Ĝ action on the symplectic
manifold (M) we take the group flow (g(t) := exp(tV)) for t ∈ R, V ∈ Ĝ and find the
corresponding vector field (KV : M→ T(M)) in the phase space (M):

KV(S, c; l, k) : = d
dt (g(t)Sg(t)−1|c + (g(t)−1∂g/∂x(t)|S); g(t)lg(t)−1

− k∂g(t)/∂xg(t)−1, k)
∣∣∣∣
t=0

= ([V, S], (∂V/∂x|S)[V, l]− k∂V/∂x, 0),

(26)

driven by a Hamiltonian function (HV : M → C), owing to the determining relationship
(−dHV = iKV ω(2)):

−dHV = −(∂H/∂l|dl)− (∂HV/∂S|dS) + ∂HV/∂kdk + ∂HV/∂cdc

= ([V, l]− k∂V/∂x|dS)− (dl|[V, S])− (∂V/∂x|S)dk.

As a consequence of (27), one obtains the following for any point ((S, k; l, c) ∈ M).

∂HV/∂l = [V, S], ∂HV/∂S = k∂V/∂x− [V, l],

∂HV/∂k = (∂V/∂x|S), ∂HV/∂c = 0

From (27), it follows that

HV = ([S, l]− k∂S/∂x|V) := (V|p(S, c; l, k)|V) (27)

is linear with respect to the generating element (V ∈ G̃). This means that the loop-group
G̃ action on the symplectic manifold (M) is Hamiltonian by definition [20–22]. There is a
corresponding mapping (p : M→ Ĝ∗), where

p(S, c; l, k) = [S, l]− k∂S/∂x, (28)

is called the momentum mapping [20–22,37], which, in general, is fixed to the phase space
(M) within the classical Marsden–Weinstein reduction scheme [20,21]. We now proceed to
describing the related symplectic structure on the ξ- level submanifold for a fixed element
(ξ ∈ Ĝ∗).

Mξ :=
{
(S, c; l, k) ∈ M : [S, l]− k∂S/∂x = ξ ∈ Ĝ∗

}
(29)

The related isotropy subgroup (Ĝξ ⊂ Ĝ) is defined via the condition Ad∗gξ = 0 for all
elements (g ∈ Ĝξ). If we additionally assume that [ξ, l] = 0, one easily obtains Ĝξ ' Ĝ.
To proceed further, some additional properties of the submanifold (Mξ ⊂ M) are needed,
which are described in the next section.

3.2. The Marsden–Weinstein Reduction and Related Courant Algebroid Structure

In this section, we describe the reduced submanifold (Mξ ⊂ M) parameterized by
the corresponding phase-space (M̄ξ := Mξ /Ĝξ) points. It is known [20,21,43] that this
parameterization uniquely determines the points ((S̄, c̄; l̄, k̄) ∈ Mξ ⊂ M,) which are in-
variant with respect to the constructed loop-group Ĝ action ((19) and (23)). The latter
makes it possible [20,21,37,43–47] to construct in the phase space (M̄ξ) the reduced and
suitably non-degenerate symplectic structure ensuing from the symplectic structure on the
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submanifold (Mξ). Let us consider the point ((S̄, c̄; l̄, k̄) ∈ Mξ) where the elements S̄ ∈ Ĝξ ,
k̄ ∈ C satisfy the following differential expressions according to the definition of (29):

[S̄, l̄]− k̄∂S̄/∂x, ∂k̄/∂x = 0, (30)

for all x ∈ S1. Now, consider a Hamiltonian vector field (−k̄∂/∂τ, τ ∈ C) on the sub-
manifold (Mξ) generated by the element X = l̄ ∈ Ĝ∗, owing to the following expressions:

−k̄∂S̄/∂τ = [l̄, S̄] = −[S̄, l̄] = −k̄∂S̄/∂x, −k̄∂l̄/∂τ = k̄∂l̄/∂x. (31)

In particular, from (31), it follows that the equality ( ∂
∂τ = ∂

∂x ) holds in the reduced phase
space (M̄ξ). Moreover, to compute the evolution of the element c̄ ∈ C with respect to this
vector field (∂/∂τ on M̄ξ :)

−k̄∂c̄/∂τ = (∂l̄/∂x|S̄) = −(l̄|∂S̄/∂x)

= −(l̄|k̄−1[S̄, l̄]) = k̄−1([l̄, l̄]|S̄) = 0,
(32)

coinciding with the a priori accepted condition (∂c̄/∂x = 0) for any x ∈ S1. Reasoning
similarly as above, for the vector field ∂/∂t, t ∈ C, in the reduced phase space (M̄ξ)
generated by the Lie algebra element (q(l̄) ∈ Ĝξ), depending on the basis element l̄ ∈ Ĝ∗ξ ,
one obtains

∂S̄/∂t = [q(l̄), S̄], ∂l̄/∂t = [q(l̄), l̄]− k̄∂l̄/∂x,

∂c̄/∂t = (∂q/∂x(l̄)|T̄), ∂k̄/∂t = 0.
(33)

The latter, in particular, means that the flows (∂/∂t and ∂/∂x) in the reduced phase space
(M̄ξ) possess a countable set (γn(l̄) := trS̄n(l̄), n ∈ Z) of conservation lows, where by
definition, the element S̄(l̄) ∈ Ĝξ satisfies the determining equation for a given element
(l̄ ∈ Ĝ∗ξ ) for all x ∈ S1:

−k̄∂S̄/∂x(l̄) = [l̄, S̄(l̄)] (34)

From Equations (34), it follows that in the reduced phase space (M̄ξ),

∂c̄/∂t = (∂q(l̄)/∂x|S̄) = k̄−1([q(l̄), l̄]− ∂l̄/∂t|S̄) =
= k̄−1([q(l̄), l̄]|S̄)− k̄−1(∂l̄/∂t|S̄) = k̄−1(l̄)− k̄−1(∂l̄/∂t|S̄)
= −k̄−1(l̄|∂S̄/∂t)− k̄−1(∂l̄/∂t|S̄)
= −k̄−1 ∂

∂t (l̄|S̄).

Thus, from the t evolution (35) of the parameter (c̄ ∈ C), one obtains the following constraint
on the reduced phase space (M̄ξ) subject to the vector field (∂/∂t) generated by the element
q(l̄) ∈ Ĝξ .

c̄ = −k̄−1(l̄|S̄) (35)

Moreover, as it is easy to observe, these two vector fields (∂/∂τ and ∂/∂t) in the reduced
phase space (M̄ξ) commute:

[∂/∂t, ∂/∂τ] = 0. (36)

The latter makes it possible to derive the following differential relationship from the
conditions of (36):

−k̄∂F̄/∂x = l̄ F̄, (37)

imposed on the reduced matrix (l̄ ∈ Ĝ∗ξ ) adjoint with the linear evolution Equation (34) and
augmented with the following compatible differential equation for the matrix F̄ ∈ Ĝξ :

F̄t = q(l̄) F̄ (38)
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Equations (37) and (38) represent the well-known [22,37,39–41,48–50] generalized Lax-type
spectral problem, allowing for the investigation of the mentioned above differential re-
lationships by means of either the inverse scattering or the inverse spectral transform
method [39,49–51], as well as by using algebraic geometry methods [49,50] and their mod-
ern Lie-algebraic generalizations [48].

To achieve this aim more analytically, we need to describe the evolution of the vector
field (∂/∂t) in the reduced phase space (M̄ξ) in more detail, subject to its dependence on the
phase-space element (l̄ ∈ Ĝ∗ξ ). As the vector fields ∂

∂t and ∂/∂x satisfy the commutativity
condition (36) on the reduced manifold (Mξ), we apply the classical Marsden–Weinstein
reduction scheme [43] to our symplectic manifold (M ), with the fixed-moment mapping
value (ξ ∈ Ĝ∗) for computing the resulting Poisson bracket (

{
(X|S̄), (Y|S̄)

}
ξ
) of the smooth

functions (X|S̄) and (Y|S̄) ∈ D(M̄ξ) in the reduced phase space (M̄ξ) parameterized by
arbitrarily chosen X, Y ∈ Ĝ∗ξ . It can be shown [28,37,45,52] that this Poisson bracket on M̄ξ

expressed as {
(X|S̄), (Y|S̄)

}
ξ
=
{
(X|S̄), (Y|S̄)

}∣∣
M̄ξ
− (ξ|[VX , VY])

∣∣
M̄ξ

, (39)

where, by definition, the mappings VX, VY : M̄ξ → Ĝξ are the solutions to the following
relationship:

(ξ|[Z, VX ]) = KZ(X|S̄), (ξ|[Z, VY]) = KZ(Y|S̄), (40)

which holds for any Z ∈ Ĝ∗ξ . The functions (X|S̄), (Y|S̄) ∈ D(M̄ξ) can be extended to those
in the whole phase space (Mξ) in such a way that their restrictions on the submanifold
(Mξ ⊂ M) are Ĝ-invariant. To apply the Marsden–Weinstein reduction scheme, (we
construct such a group element g(l) ∈ Ĝ) that for an arbitrarily chosen l ∈ Ĝ∗ξ , the following
gauge expression holds and satisfies the normalization condition (g(l̄) = Id ∈ Ĝ):

l = g(l)l̄g(l)−1 − k̄∂g/∂x(l)g(l)−1 (41)

Having now considered the function

fX := (g(l)Xg(l)−1|S), (42)

for some elements suitably extended on the whole manifold (Mξ) (elements X ∈ Ĝ∗ξ and
S ∈ Ĝξ), one can observe that fX |M̄ξ

= (X|S̄), which is, by construction, Ĝ-invariant.

The latter means that fX ∈ D(Mξ) for any l ∈ Ĝ∗ξ and for any a ∈ Ĝξ ' Ĝ

a ◦ fX : = (g(a ◦ l)Xg(a ◦ l)−1|a · S)
= (ag(l)Xg(l)−1 · a−1|aSa−1)

= (g(l)Xg(l)−1|S) = fX ,

(43)

where we use the invariance property (g(a ◦ l) = ag(l), l ∈ Ĝ∗ξ ) following from expres-
sions (41) and (23):

a ◦ l = ala−1 − k̄∂a/∂xa−1 = a(g(l)l̄g(l)−1 − k̄∂g/∂x(l)g(l)−1)a−1 − k̄∂a/∂xa−1

= ag(l)l̄(ag(l))−1 − k̄a∂g/∂x(l)g(l)−1a−1 − k̄∂a/∂xa−1

= ag(l)l̄(ag(l))−1 − k̄(a∂g(l))/∂x(ag(l))−1

= g(a ◦ l)l̄g(a ◦ l)−1 − k̄∂g/∂x(a ◦ l)g(a ◦ l)−1,

(44)
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which holds for any a ∈ Ĝξ and l ∈ Ĝ∗ξ . Returning to the Poisson bracket (39), we can replace
the functions (X|S̄) and (Y|S̄) ∈ D(M̄ξ) with their Ĝξ-invariant extensions ( fX ∈ D(Mξ)).
Before calculating the corresponding Poisson bracket{

f̄X , f̄Y
}

ξ
=
{

f̄X , f̄Y
}
|M̄ξ
− (ξ|[VX , VY]) = { fX , fY}|M̄ξ

− KVX fY|M̄ξ
, (45)

where KVX : Mξ → T(Mξ) is the vector field generated on Mξ by the element VX ∈ Ĝξ , we
need to calculate the action (KZ fY) for any element (Z ∈ Ĝ∗ξ ). From (43), one easily finds
that

KZ fY = d
dε

(
g(exp(εZ) ◦ l)Yg(exp(εZ) ◦ l)−1| exp(εZ)S exp(−εZ)

)
|ε=0

= (g(l)[g(l)−1g′(l)([Z, l]− k̄∂Z/∂x)− g(l)−1Zg(l), Y]g(l)−1|S).
(46)

holds on the submanifold (Mξ). Thus, in the reduced phase space (M̄ξ), the general
expression (46) implies

KVX fY|M̄ξ
= ([g′(l̄) · ([Vx, l̄]− k̄ ∂

∂x Vx)−VX , Y]|S̄). (47)

Thus, owing to the relationships { fX , fY} = −ω(2)(KVX , KVY ) and (47), the Poisson bracket (45)
becomes {

(X|S̄), (Y|S̄)
}

ξ
=
(
[g′(l̄)(Y), X] + [Y, g′(l̄)(X)]|S̄

)
−
(
[g′(l̄)([VX , l̄]− k̄ ∂

∂x VX)−VX , Y]|S̄
)

= ([g′(l̄)(Y), X] + [Y, g′(l̄)(X)]|S̄),

(48)

taking into account that, owing to (40) and (47):(
[g′(l̄)([VX , l̄]− k̄ ∂

∂x VX)−VX , Y]|S̄
)
= KVX fY = (ξ|[KVX , VY])

∣∣
ξ=0 = 0.

Now, one can rewrite the Poisson bracket (48) as{
(X|S̄), (Y|S̄)

}
ξ
= ([X, Y]D|S̄), (49)

where, by definition, the classical D structure is introduced in the linear space (Ĝ∗ξ ):

[X, Y]D := ad∗D(X)Y− ad∗D(Y)X, (50)

where X, Y ∈ Ĝ∗ξ , and the linear homomorphism (D : Ĝ∗ξ → Ĝξ) is defined as

D(X) := −g′(l̄)(X). (51)

The constructed mapping (51) should obviously satisfy [28,52] the well-known Jacobi-type
condition for any X, Y and Z ∈ Ĝ∗ξ .

([X, [D(Y), D(Z)]−D[Y, Z]D]|S̄) + ([X, {(S̄|Y), (S̄|Z)}ξ ]|S̄) + cycles = 0 (52)

We now take into account that the mapping g : Ĝ∗ξ → Ĝ satisfies relationship (41),
implying [53] the following determining differential expression for any X ∈ Ĝ∗ξ depending
on a chosen reduction (Ĝ 3 l → l̄ ∈ Ĝ∗ξ ):

[g′(l̄)(X), l̄]− k̄ ∂
∂x g′(l̄)(X) = X (53)
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The D mapping introduced above (51) satisfies the following additional relationship:

S(l) = g(l)S̄(l̄)g(l)−1, (54)

which can be obtained from the group Ĝ action on element S(l̄) ∈ Ĝξ and following
naturally from (41). From the differentiation of (54) with respect to l ∈ Ĝ∗ξ at point
l → l̄ ∈ Ĝ∗ξ , one obtains the following additional commutator expression for an arbi-
trary element (X ∈ Ĝ∗ξ ):

S′(l̄)(X) = [g′(l̄)(X), S̄(l̄)] (55)

Moreover, since matrix (54) satisfies relationship (34), its differentiation with respect
to l̄ ∈ Ĝ∗ξ entails the following differential expression:

k̄ ∂
∂x S′(l̄)(X) + [l̄, S′(l̄)(X)] = [S̄(l̄), X], (56)

which holds for any X ∈ Ĝ∗ξ . Now, we take into account that the matrix S̄(l̄)(z; λ) ∈ Ĝξ

coincides exactly with the monodromy matrix (F̄(z + 2π; z; λ), z ∈ R, λ ∈ C) of the linear
periodic problem (37). Using direct calculations, one can verify the following commutator
tensor expression:{

S̄(l̄)(z; λ)⊗, S̄(l̄)(z; µ)
}

ξ
= (57)

=

z+2π∫
z

dx
z+2π∫

z

dy
{

F(z + 2π, x; λ)l̄(x; λ)F(x, z; λ)⊗, F(z + 2π, y; µ)l̄(y; µ)F(y, z; µ)
}

ξ
=

=

z+2π∫
z

dx
z+2π∫

z

dy
{
(F(z + 2π, x; λ)⊗ I)(l̄(x; λ)⊗ I)(F(x, z; λ)⊗ I, (58)

I⊗ F(z + 2π, y; µ)(I⊗ l̄(y; µ))(I⊗ F(y, z; µ))
}

ξ
=

=

z+2π∫
z

dx
z+2π∫

z

dyF(z + 2π, x; λ)⊗ F(z + 2π, y; µ)
{

l̄(x; λ)⊗, l̄(y; µ)
}

ξ
F(x, z; λ)⊗ F(y, z; µ)

z+2π∫
z

dx
z+2π∫

z

dyF(z + 2π, x; λ)⊗ F(z + 2π, y; µ)ω̄(λ, µ; x, y)F(x, z; λ)⊗ F(y, z; µ), (59)

where z ∈ S1, λ, µ ∈ C, and, by definition,

{
l̄(x; λ)⊗, l̄(y; µ)

}
ξ

:= ω̄(λ, µ; x, y) =
N

∑
i,k=0

ω̄ik(λ, µ; x, y)(∂/∂x)i(∂/∂y)kδ(x− y). (60)

for any x, y ∈ S1. Here, the locally defined functional matrices (ω̄ik(λ, µ; x, y) ∈ Ĝ∗ξ ⊗ Ĝ∗ξ ,
i, k = 0, N) are assumed to satisfy the antisymmetry property for all i, k = 1, N, x, y ∈ S1,
λ, µ ∈ C,

Pω̄ik(λ, µ; x, y)P = −ω̄ki(µ, λ; x, y), (61)

and the permutation operator (P : Ĝ∗ξ ⊗ Ĝ∗ξ → Ĝ∗ξ ⊗ Ĝ∗ξ ) acts as PX⊗YP := Y⊗ X for any
X, Y ∈ Ĝ∗ξ . Similarly to calculations reported in [39,54,55], (73) yields

{
S̄(z; λ)⊗, S̄(z; µ)

}
ξ
=

z+2π∫
z

dxF̄(z + 2π, x; λ)⊗

⊗ F̄(z + 2π, x; µ)Ω̄(λ, µ; x)F̄(x, z; λ)⊗ F̄(x, z; µ)

(62)
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for a matrix (Ω̄(λ, µ; x) ∈ Ĝ∗ξ ⊗ Ĝ∗ξ ) for all λ, µ ∈ C, x ∈ S1, depending only on the element
(l̄ ∈ Ĝ∗ξ ). It is worth observing that the Poisson bracket (48) can be rewritten equivalently as{

S̄(l̄)(λ)⊗, S̄(l̄)(µ)
}

ξ
= [R̄(λ, µ), S̄(l̄)(λ)⊗ I+ I⊗ S̄(l̄)(µ)], (63)

where R̄ ∈ Ĝ∗ξ ⊗ Ĝ∗ξ denotes a tensor mapping corresponding to the linear homomor-
phism (D : G̃∗ξ → G̃ξ) constructed above. Expression (63) allows for the follow compact
representation:{

S̄(z; λ)⊗, S̄(z; µ)
}

ξ
= R(λ, µ; z)S̄(z; λ)⊗ S̄(z; µ)− S̄(z; λ)⊗ S̄(z; µ)R(λ, µ; z), (64)

if the kernel (R(λ, µ; x)) of the tensor (R ∈ Ĝ∗ξ ⊗ Ĝ∗ξ ) satisfies the following differential
relationship for all x ∈ S1 and λ, µ ∈ C:

∂
∂x R(λ, µ; x) + [R(λ, µ; x), l̄(x; λ)⊗ I+ I⊗ l̄(x; µ)] = Ω̄(λ, µ; x). (65)

Moreover, to define the related mapping (R : Ĝξ → Ĝξ) as

RA := res
µ=0

2π∫
0

dyR(λ, µ; y)δ(x− y)A(y; µ) (66)

for any A ∈ Ĝξ , the differential relationship (65) can be easily rewritten in the following
operator form:

−(A|∂R/∂xB) + (l̄|[A, B]R) = (A|RB), (67)

which holds for any A, B ∈ Ĝξ , where the expression

[A, B]R := [−R∗A, B] + [A, RB] (68)

denotes a new so-called deformed Lie structure in the linear space (Ĝ∗ξ ). The result (67) can
be also used to rewrite the Poisson bracket (64) as{

(X|S̄(l̄)), (Y|S̄(l̄))
}

ξ
=
(
l̄|[F̄XF̄2π , F̄YF̄2π ]R

)
−
(

F̄XF̄2π | ∂
∂x R(F̄YF̄2π)

)
=
(
l̄|[∇(X|S̄)(l̄),∇(Y|S̄)(l̄)]R

)
+
(

∂
∂x∇(X|S̄)(l̄)|R(∇(Y|S̄)(l̄))

)
−
(

R∗(∇(X|S̄)(l̄))| ∂
∂x (∇(Y|S̄)(l̄))

)
,

(69)

where, by definition, F̄ := F̄(l̄)(x, y; λ), F̄2π := F̄(l̄)(y + 2π, x; λ) ∈ Ḡ, x, y ∈ S1, λ ∈ C,
and the gradients (∇(X|S̄)(l̄) and ∇(Y|S̄)(l̄) ∈ Ĝ∗ξ ) are defined in the standard way as

(Z|∇ f (l̄)) := d
dε f (l̄ + εZ)

∣∣∣∣
ε=0

(70)

for any smooth functional ( f ∈ D(Ĝ∗ξ )) and arbitrary Z ∈ Ĝ∗ξ . It is also easy to observe that
under the assumed antisymmetry condition described above (R∗ = −R), the right-hand
side of (69) coincides with the Lie–Poisson bracket [37,39,43,48,50] for functionals (X|Ĝ∗ξ )
and (Y|Ĝ∗ξ ) ∈ D(Ĝ∗ξ ) in the adjoint space (Ĝ∗ξ ) with respect to the deformed commutator
structure ([·, ·]R) on the centrally extended Lie algebra Ĝξ : for any (A, α), (B, β) ∈ Ĝ∗ξ ,
α, β ∈ C, with the Lie bracket

[(A, α), (B, β)]R := ([A, B]R, (R(B)|∂A/∂x)− (R(A)|∂B/∂x)). (71)
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Thus, owing to (68), the classical R structure

[A, B]R := [RA, B] + [A, RB] (72)

on the Lie algebra (Ĝξ) under the conditions formulated above based on the mapping
R : Ĝξ → Ĝξ generates a new Lie algebra structure on Ĝ∗ξ . The obtained result can be
formulated as the following proposition.

Proposition 2. The constructed reduced canonical Poisson structure in the phase space (M̄ξ ) for
the monodromy matrix (S̄(l̄) ∈ Ĝξ) exactly coincides with the corresponding classical Lie–Poisson
bracket on the centrally extended Lie algebra (Ĝξ) subject to the antisymmetric R structure (71).

The Poisson bracket (72), satisfying the Jacobi identity, makes it possible to define a
dual Lie–Poisson bracket in the adjoint space (Ĝ∗ξ ) via the following canonical expression at
an element (l̄ ∈ Ĝ∗ξ ):

{(l̄|A), (l̄|B)}ξ = (l̄|[[A, B]R) + (∂A/∂x|RB)− (∂B/∂x|RA) (73)

If the antisymmetry property for the mapping (R : Ĝξ → Ĝξ) does not hold, the gener-
ated Lie–Poisson-type bracket in the functional space (D(Ĝ∗ξ )) can be defined as follows,
owing to (69): for any f , g ∈ D(Ĝ∗ξ ), the bracket is

{
f (l̄), g(l̄)

}
ξ

:= (l̄|[∇ f (l̄),∇g(l̄)]R) +
(

∂
∂x∇ f (l̄)|R∇g(l̄)

)
−
(
(R∇ f (l̄))| d

dx∇g(l̄)
)

(74)

where the generalized R structure ([·, ·]R) on Ĝξ is given by expression (68). The results
obtained above can be summarized as the following theorem.

Theorem 1. The Poisson bracket (48) in the reduced phase space (M̄ξ) represented by a D struc-
ture (49) in the linear space (Ĝξ) naturally generated by the gauge transformation (41) reduced on the
element l̄ ∈ Ĝ∗ξ is uniquely defined on M̄ξ and generates the anchor mapping( ρξ := D : Ĝ∗ξ → Ĝξ)
in the bundle (Ĝξ × Ĝξ), satisfying the Lie algebra homomorphism property for any X, Y ∈ Ĝ∗ξ , thus
determining a Courant type algebroid.

D[X, Y]D = [DX, DY] (75)

Proof. One needs only to argue the homomorphism property (75) following from the dual
tensor form of the Poisson bracket (48) in the space (Ĝξ ⊗ Ĝξ), which holds for arbitrary
λ, µ ∈ C, where R(λ, µ) ∈ Ĝξ ⊗ Ĝξ denotes the tensor form of the D mapping (D : Ĝ∗ξ → Ĝξ)
constructed above. As this mapping (D : Ĝ∗ξ → Ĝξ) is uniquely represented as a tensor
(D ∈ Ĝξ ⊗ Ĝξ), the latter can be split into non-degenerate symmetric (µ ∈ Ĝξ ⊗ Ĝξ) and
antisymmetric (η ∈ Ĝξ ⊗ Ĝξ) parts. We now take into account that the composed mapping
(R := η ◦ µ−1 : Ĝξ → Ĝξ) generates the second Lie bracket

[V1, V2]R := [RV1, V2] + [V1, RV2], (76)

exactly coinciding with that of (72), owing to relationship (52), thus proving the homomor-
phism property (75).

It is also worth remarking that the trace operation applied to the Poisson bracket (63)
causes it to vanish in the phase space (M̄ξ) for the functionals trS̄(l̄)(λ) and trS̄(l̄)(µ)
for arbitrary λ, µ ∈ C, describing the complete set of Casimir functionals [39,48] of the
coadjoint action of the isotropy group (Ĝξ) in the adjoint space Ĝ∗ξ .
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4. Remarks on the Courant-Type Algebroid Foliation and Related Hamiltonian Flows

Let (E; [[·, ·]], ρ), E := A(M) be a Courant-type algebroid over a manifold (M) for which
the characteristic space (ρ(Ex) ⊂ Tx(M), x ∈ M) is involutive and finitely generated. On the
algebroid (E; [[·, ·]], ρ), the external differential of dE : Γ(Λ(E∗))→ Γ(Λ(E∗)) is naturally
defined, where Λ(E∗) := ⊕k∈Z+

∧k(E∗), as follows:

(
dEα(k)

)
(A0, . . . , Ak) : =

k

∑
i=0

(−1)iρ(Ai)Eα(k)((A0, . . . , Âi, . . . , Ak)

+
k

∑
i<j=0

(−1)i+jα(k)([[Ai, Aj]], A0, . . . , Âi, . . . , Âj, . . . , Ak),

(77)

for α(k) ∈ Γ(Λk(E∗)) and arbitrary Ai ∈ Γ(E), i = 0, k, and k ∈ Z+, satisfying the natural
algebraic cohomology complex property (dEdE = 0). Differential (77) makes it possible to
also determine the Lie derivative along a section (A ∈ Γ(E)).

L(E)
A := iAdE + dEiA (78)

It is obvious that for E = T∗(M)× T(M), ρ := prT(M) and A ∈ Γ(T∗(M)× T(M)),
the external differential (dE) transits into the usual differential (d ◦ prΛ(M) : T(M) ×
Λ(M)→ Λ(M)).

Let a two-form ω(2) ∈ Γ(Λ2(E)) be closed and invariant with respect to a vector
(K ∈ Γ(E)), that is,

dEω(2) = 0, L(E)
K ω(2) = 0 (79)

on M. The latter simply means that there exists a locally defined smooth function
(H1 : Γ(E∗)→ R) such that

iKω(2) = −dEH1. (80)

If the function H1 : Γ(E∗) → R is defined globally, then the vector K ∈ Γ(E) is called a
Hamiltonian flow in bundle E.

We now consider a coordinate vector set (e := {ei ∈ Γ(E∗) : i = 1, m}) in the
vector bundle (Γ(E)) and the corresponding basis of its differentials ({dEei ∈ Γ(T∗(E∗)) :
i = 1, m}) and take a linear and invertible subject to the second component mapping
(QE : Γ(E∗)× Γ(T∗(E∗))→ Γ(T∗(E∗))), determining the following elements by means of
mappings (QE(e)j ∈ End Γ(E∗), j = 1, m).

d∗Ee = ∑
j=1,m

QE(e)jdEej ∈ Γ(T∗(E∗)) (81)

Expression (81) makes it possible to define a second external differential (d∗E : Γ(Λ(E∗))
→ Γ(Λ(E∗))), satisfying the algebraic cohomology complex property (d∗Ed∗E = 0) and
anticommuting to the external deformed differential (dE : Γ(Λ(E∗))→ Γ(Λ(E∗))) :

dEd∗E + d∗EdE = 0. (82)

As the symplectic two-form ω(2) ∈ Γ(Λ2(E∗)) is, by definition, dE-closed (dEω(2) = 0), we
also assume its d∗E-closedness, that is, d∗Eω(2) = 0.

Definition 3. External derivations (), dE, d∗E : Γ(Λ(E∗))→ Γ(Λ(E∗)) satisfying the properties
dEdE = 0, d∗Ed∗E = 0 and dEd∗E + d∗EdE = 0 are called compatible.

We additionally on the symplectic two-form ω(2) ∈ Γ(Λ2(E∗)) its K invariance with
respect to the related Lie derivative:
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L(E,∗)
K ω(2) := 0 (83)

L(E,∗)
K := iKd∗E + d∗EiK. (84)

One easily derives that the following expression holds for some smooth mapping (H1, H2 :
Γ(E∗)→ R).

iKω(2) = −d∗EH1 = −dEH2 (85)

Moreover, multiplying the right-hand side of the equality −d∗EH1 = −dEH2 by the
differential d∗E : Γ(Λ(E∗))→ Γ(Λ(E∗)), one easily finds that

−d∗Ed∗EH1 = dE(d∗EH2) = 0, (86)

meaning that there exists a smooth mapping (H3 : Γ(E∗)→ R) such that

d∗EH2 = dEH3. (87)

The relationship obtained above (85) can be recurrently continued and equivalently rewrit-
ten [56,57] as the modified Lenard–Magri-type mapping (Q(∗)

E : Γ(T∗(E∗)) → Γ(T∗(E∗))),
acting as

dEHj+1 := Q(∗)
E
(
dEHj

)
= d∗EHj (88)

for the set of smooth mappings (Hj : Γ(E∗) → R, j = 1, m, H2 = H, d∗EHm = 0) gener-
ated by the second external differential (d∗E : Γ(Λ(E∗) → Γ(Λ(E∗)), which is defined by
expression (81).

It is also easy to observe that there exists a one-form β
(1)
1 ∈ Γ(Λ1(E)) satisfying the

condition dEβ
(1)
1 = ω

(2)
1 := ω(2) and generating the second closed two-form

ω
(2)
2 := dE ◦Q(∗)

E (β
(1)
1 ) ∈ Γ(Λ2(E∗)),

which is both dE- and d∗E-closed. The latter makes it possible to construct a countable

hierarchy of symplectic structures (ω(2)
j ∈ Γ(Λ2(E∗)), j = 1, m) such that

ω
(2)
j+1 = dE ◦QE(β

(1)
j ), ω

(2)
j := dEβ

(2)
j

for j = 1, m, satisfying the next recurrent relationship jointly with the next countable
hierarchy of differential relationships for all integers j = 1, m:

ω
(2)
j+1 = dE ◦Q(∗)

E ◦ d−1
E (ω

(2)
j ), dE ◦Q(∗)

E (β
(1)
m ) = 0, (89)

iKω
(2)
j = −dEHj+1 (90)

Moreover, one can easily verify that all Hamiltonian functions constructed above
(Hj : Γ(E∗)→ R, j = 1, m) commuting with each other, that is,

{{Hj, Hi}}s = 0 (91)

for all i, j = 1, m with respect to the following Poisson brackets:

{{ f , g}}s := ω
(2)
s (K f , Kg), iK f ω

(2)
s = −dE f , iK f ω

(2)
s = −dE f , (92)
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defined for s = 1, m and arbitrary smooth functions ( f , g : Γ(E∗) → R). The properties
of the Courant-type algebroid foliation over the manifold (M) described above can be
summarized as the next theorem.

Theorem 2. The Courant-type algebroid foliation ((E; [[·, ·]], ρ), E = A(M)), endowed with
two compatible external differentials (dE, d∗E : Γ(Λ(E∗)) → Γ(Λ(E∗))), generates a finite set of
commuting Hamiltonian flows (Kj : Γ(E∗)→ Γ(E), j = 1, m) in a coordinate set (e ∈ Γ(E∗)) of
the bundle Γ(E), that is,

[[Kj, Ki]] = 0 (93)

for all i, j = 1, m, where
Kj(e) = {{H1, e}}j (94)

and K1 := K ∈ Γ(E).

It is worth observing that the external deformed differential (d∗E : Γ(Λ(E∗)) →
Γ(Λ(E∗))) defined by means of relationship (81) and satisfying the constraint d∗Ed∗E = 0 can
be interpreted as a flat connection (d∗E : Γ(E∗)→ T∗(E∗)⊗ Γ(E∗) on Γ(E)), acting as

d∗E A = ∑
j=1,m

[dE(ej(e))ej(A) + ej(e)
(

dEej
)
(A)]

+ ∑
i,j=1,m

ei(e)QE(e)i
j

(
dEej

)
(A)

(95)

on any vector A := ∑m
j=1 ej(e)Aj ∈ Γ(E), where Aj := ej(A), j = 1, m. As it is easy to check,

the curvature two-form

Ω(2) : = d∗Ed∗E = dE

(
∑j=1,m QE(e)jdEej

)
+

 ∑
j=1,m

QE(e)jdEej

 ∧
 ∑

j=1,m

QE(e)jdEej

 = 0,
(96)

meaning that the connection d∗E : Γ(E∗)→ T∗(E∗)⊗ Γ(E∗) on Γ(E) is flat.
It is interesting to look at a special case [5] of the external differential (d∗E : Γ(Λ(E∗))→

Γ(Λ(E∗))) defined by means of the following expression:

(
d̃∗Eα(k)

)
(A0, . . . , Ak) : =

k

∑
i=0

(−1)iρ(TAi)Eα(k)((A0, . . . , Âi, . . . , Ak)

+
k

∑
i<j=0

(−1)i+jα(k)([[Ai, Aj]]T , A0, . . . , Âi, . . . , Âj, . . . , Ak),

(97)

where T : Γ(E)→ T(E) is a linear homomorphism, and the commutator [[·, ·]]T on Γ(E) is
calculated according to the following expression for arbitrary X, Y ∈ Γ(E):

[[X, Y]]T = [[TX, Y]] + [[X, TY]]− T[[X, Y]] (98)

Then, the external differential (97) satisfies the algebraic cohomology complex property
(d̃∗Ed̃∗E = 0) if there the following Nijenhuis constraint (T : Γ(E)→ T(E)) holds:

T[[X, Y]]T = [[TX, TY]] (99)

for all X, Y → Γ(E) and is imposed on the homomorphism T : Γ(E) → T(E). Moreover,
the external differential (97) satisfies the usual anticommutativity property

d̃∗EdE + dEd̃∗E = 0



Symmetry 2024, 16, 76 17 of 20

and can be identified under some natural conditions imposed on the homomorphism
T : Γ(E)→ T(E) and the corresponding mappings (QE(e)j ∈ End Γ(E∗), j = 1, m), with the
external differentiation d∗E : Γ(Λ(E∗)) → Γ(Λ(E∗)). The pair of external differentiations
d̃∗E, dE : Γ(Λ(E∗)) → Γ(Λ(E∗)), together, form the corresponding Frölicher–Nijenhuis-
compatible bicomplex [5], generating a countable hierarchy of commuting bi-Hamiltonian
flows on Γ(E∗) as described above. The construction described above is also related to
a Lauricella [58] problem of bi-flat F manifolds, which are interesting for applications in
topological quantum field theory, as first demonstrated in [59–62].

5. The Loop Diffeomorphisms Group (D̃i f f (Tn)), the Courant-Type Algebroid
((A(G̃)∗, [[·, ·]], r̃)) and the Related Integrable Hamiltonian Flows

Let us consider the product D̃i f f+(Tn)× D̃i f f−(Tn), n ∈ Z+, where D̃i f f±(Tn) are

subgroups of the loop diffeomorphism group (D̃i f f (Tn) := {C ⊃ S1 → Di f f (Tn)}) of
the torus (Tn) holomorphically extended in the interior (D1

+ ⊂ C) and exterior (D1
− ⊂ C)

regions of the unit’s centrally located disk (D1 ⊂ C1), respectively, such that for any
g̃(λ) ∈ D̃i f f−(Tn), λ ∈ D1

−, g̃(∞) = 1 ∈ Di f f (Tn). The corresponding Lie subalgebra
(d̃i f f (Tn) ' d̃i f f+(Tn) ⊕ d̃i f f−(Tn)) is a direct sum of the subalgebras

(d̃i f f±(Tn) ' Ṽect±(Tn)) of the loop subgroups (D̃i f f±(Tn)) of vector fields on S1×Tn ex-
tended holomorphically, respectively in regions D1

± ⊂ C1, where for any ã(λ) ∈ d̃i f f−(Tn),
the value is ã(∞) = 0.

We now proceed to studying Courant-type algebroids and the related
integrable Hamiltonian flows within the classical Adler–Kostant–Symes-type
scheme [23–26]. Let us consider the related affine Courant-type algebroid
A∗(D̃i f f (Tn)) ' (d̃i f f (Tn)∗n d̃i f f (Tn), {·, ·}, r̃), where, by definition, the affine Lie al-
gebra is A(D̃i f f (Tn)) := d̃i f f (Tn)n d̃i f f (Tn)∗, where the invariant anchor morphism is
r̃ : d̃i f f±(Tn)∗ → d̃i f f±(Tn), r̃ := k̃ ⊕η̃ such that the linear mappings generated by the

related derivation D̃ := k̃ ◦ η̃−1 : A(D̃i f f (Tn)) → A(D̃i f f (Tn)), are the corresponding
projectors on the subalgebras (A±(D̃i f f (Tn)) ⊂ A(D̃i f f (Tn))).

P̃± := I ± D̃−1/2 : A(D̃i f f (Tn))→ A±(D̃i f f (Tn)), (100)

It is worth observing that if the mapping (k̃ : d̃i f f±(Tn)∗ → d̃i f f±(Tn)) is invertible
and the dual mapping (R̃ := η̃ ◦ k̃−1 : d̃i f f±(Tn)→ d̃i f f±(Tn)) is such that mappings

P̃± := I ± R̃/2 : A(D̃i f f (Tn))→ A±(D̃i f f (Tn)) (101)

are projectors, then the following commutator structure defines the linear space
(A(D̃i f f (Tn))) of the deformed Lie structure.

[A, B]R̃ := [R̃A, B] + [A, R̃B] (102)

The following theorem, justifying the relationship between the Lie–Poisson bracket in
the space (A∗(D̃i f f (Tn))) and the corresponding Courant structure, holds.

Theorem 3. The adjoint space (A∗(D̃i f f (Tn))) is Poissonian with respect to the following de-
formed Lie–Poisson structure at (l̃, p̃) ∈ A∗(D̃i f f (Tn)) for any X̃, Ỹ ∈ A(D̃i f f (Tn)):

{(l̃, p̃)(X̃), (l̃, p̃)(Ỹ)}D = (l̃, p̃)([X̃, Ỹ]D) (103)

Let I(A∗(D̃i f f (Tn))) := {γ ∈ D(A∗(D̃i f f (Tn))) : ad∗
gradγ(l̃)

(l̃, p̃) = 0, (l̃, p̃) ∈

A∗(D̃i f f (Tn))} denote the set of Casimir functionals in the space (A∗(D̃i f f (Tn))) in-
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variant with respect to the canonical coadjoint action of the loop diffeomorphism group
(D̃i f f (Tn)) on A∗(D̃i f f (Tn)). Then, any countable sequence of independent function-
als (γj ∈ I(A∗(D̃i f f (Tn))), j ∈ N) commute with each other with respect to the de-
formed Lie–Poisson structure ({·, ·}D) and generate an infinite hierarchy of completely
integrable [20,37,39] Hamiltonian systems in the space (A∗(D̃i f f (Tn))) with respect to the
evolution parameters (tj ∈ R, j ∈ N).

∂(l̃, p̃)/∂tj = −ad∗D̃−1gradγj(l̃,p̃)
(l̃, p̃) (104)

As naturally follows from [29–31,44,46], the integrable Hamiltonian systems (104)
constructed above suitably generalize so-called [33] heavenly-type differential systems, de-
scribing diverse geometric structures of conformal types on finite dimensional Riemannian
manifolds. We plan to conduct detailed investigations of some such structures related to
so-called WDVV associativity equations [46,63,64] and the related Dubrovin-type affine
connections [59,60].

6. Conclusions

We provided constructions of Courant algebroids related to semisimple Lie groups
and showed that the related Lie algebroid reduces to the Courant algebroid, as similarly
described in [3]. Moreover, this construction proved to be naturally generalizable in the case
in which the canonical symplectic mapping is replaced by a Lie algebra homomorphism.
We also devised an approach to constructing Courant algebroids with rich differential–
geometric properties, making use of the powerful Adler–Kostant–Symes scheme for Poisson
structures in coadjoint orbits, in particular its version based on the R structure and as-
sociated with a specially defined tensor mapping, providing the canonical Lie–Poisson
bracket in the dual space. We also studied some differential geometric and symplectic
properties of a special Courant-type algebroid foliation and analyzed the algebraic structure
of related Hamiltonian flows. In particular, we showed that the Courant-type algebroid
foliation, being equipped with two compatible external differentials, generates a finite set
of commuting Hamiltonian flows, realizing the classical Magri-type recursion scheme. We
also conducted a detailed analysis of Courant-type algebroids related to the loop diffeo-
morphism group and constructed compatible pairs of Poisson brackets and the related
integrable Hamiltonian flows within the classical Adler–Kostant–Symes scheme, suitably
generalizing the so-called heavenly-type differential systems describing diverse geometric
structures of conformal types on finite dimensional Riemannian manifolds.
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