Next Article in Journal
Machine Learning Reveals Molecular Similarity and Fingerprints in Structural Aberrations of Somatic Cancer
Next Article in Special Issue
Examples of Expansions in Fractional Powers, and Applications
Previous Article in Journal
Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion
Previous Article in Special Issue
Some Identities with Multi-Generalized q-Hyperharmonic Numbers of Order r
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Several Results Associated with the Apéry-like Series

by
Prathima Jayarama
1,†,
Dongkyu Lim
2,*,† and
Arjun K. Rathie
3,†
1
Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
2
Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea
3
Department of Mathematics, Vedant College of Engineering & Technology, Rajasthan Technical University, Bundi 323021, Rajasthan, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2023, 15(5), 1022; https://doi.org/10.3390/sym15051022
Submission received: 3 March 2023 / Revised: 24 April 2023 / Accepted: 26 April 2023 / Published: 4 May 2023

Abstract

:
In 1979, Apéry proved the irrationality of ζ ( 2 ) and ζ ( 3 ) . Since then, there has been much research interest in investigating the Apéry-like series for values of Riemann zeta function, Ramanujan-like series for π and other infinite series involving central binomial coefficients. The purpose of this work is to present the first 20 results related to the Apéry-like series in the form of 4 lemmas, each containing 5 results. The Sherman’s results are applied to attain this. Thereafter, these 20 results are further used to establish up to 104 results pertaining to the Apéry-like series in the form of 4 theorems, with 26 results each. These findings are finally been described in terms of the generalized hypergeometric functions. Symmetry occurs naturally in the generalized hypergeometric functions.

1. Introduction

The generalized hypergeometric function p F q with p numerator q denominator parameters is defined by [1,2,3,4,5]
p F q α 1 , , α r ; z β 1 , , β s = m = 0 α 1 m α r m β 1 m β s m z m m !
where ( α ) m is well-known Pochhammer’s symbol defined by
α m = α ( α + 1 ) ( α + m 1 ) ; m N 1 ; m = 0
In terms of gamma function, we have
( α ) m = Γ ( α + m ) Γ ( α )
As usual, r and s are non-negative integers; α j ( j = 1 , 2 , , r ) and β j ( j = 1 , 2 , , s ) can take arbitrary complex values with one exception: β j ( j = 1 , 2 , , s ) should not be zero or a negative integer. The series converges for all | z | < whenever r s . It also converges when r = s + 1 , provided that | z | < 1 and | z | = 1 when r = s + 1 and R e ( δ ) > 0 , where
δ = j = 1 s β j j = 1 r α j
It is appropriate to note that the generalized hypergeometric function and its many special and limiting cases, including Gauss’s hypergeometric function 2 F 1 and confluent hypergeometric function 1 F 1 , occur in a variety of theoretical and real-world circumstances in applied mathematics, theoretical physics, engineering, and statistics.
One might refer to [1,2,3,4,5] for more information on the generalized hypergeometric function p F q .
However, for non-negative integers m and k, the binomial coefficient is defined as follows:
m k = m ! k ! ( m k ) ! ; m k 0 ; m < k
The central binomial coefficient is defined by
m 2 m = ( 2 m ) ! ( m ! ) 2 , ( m = 0 , 1 , 2 , . . . ) .
It is interesting to note that the central binomial coefficients and reciprocal of the central binomial coefficients, which have been extensively researched, play a key role in numerous branches of mathematics, including number theory, combinatorics, probability theory, and statistics. The books by Koshy [6] and Riordan [7] are also good resources and contain many details regarding these coefficients. Gould [8] contains many identities concerning central binomial coefficients and their reciprocals. Many intriguing and practical identities can occasionally be seen in the research papers published by notable researchers, such as Lehmer [9] and Leshchiner [10], Mansour [11], Pla [12], Sprugnoli [13,14], Sury [15], Sury et al. [16], Trif [17], Wheelon [18], Zhao and Wang [19], Kumar et al. [20], Zhang and Ji [21], and references therein. In addition to this, for a new asymptotic series and estimates related to the well-known Euler–Mascheroni constant, we also refer to an interesting research paper by Cristea [22].
In a very interesting and useful research paper, Apéry [23], in 1979, proved the irrationality of ζ ( 3 ) by making use of the identity viz.
ζ ( 3 ) = 5 2 m = 1 ( 1 ) m 1 ( m ! ) 2 ( 2 m ) ! m 3 ,
and the irrationality ζ ( 2 ) by making use of the identity viz.
ζ ( 2 ) = 3 m = 1 ( m ! ) 2 ( 2 m ) ! m 2 .
In addition to this, following Apéry proof, a large number of a similar series
m = 0 ( m ! ) 2 ( 2 m ) ! f ( m ) = m = 0 f ( m ) 2 m m ,
which were frequently referred to in the literature as Apéry-like series have been examined by eminent scholars including Van der Poorten [24], and Borwein et al. [25]. Berndt and Joshi [26] and Zucker [27] have also documented a large number of simila formulas in their analysis of Chapter 9 of Ramanujan’s second notebook.
In 2000, Sherman [28] established a large number of Apéry-like series, the following of which will be used in our investigations:
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m = π 2 + 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( m + 1 ) = π π 2 8 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( m + 2 ) = 5 π 2 3 π 2 8 3 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( m + 3 ) = 6 π 15 π 2 16 35 4 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( m + 4 ) = 83 π 6 35 π 2 16 763 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( m + 5 ) = 31 π 315 π 2 64 193 4 .
m = 0 ( 1 ) m ( m ! ) 2 ( 2 m ) ! 2 m = 8 9 4 ln 2 27 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( m + 1 ) = 8 3 ( ln 2 ) 2 ( ln 2 ) 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( m + 2 ) = 100 3 ( ln 2 ) + 24 ( ln 2 ) 2 + 12 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( m + 3 ) = 998 3 ( ln 2 ) 240 ( ln 2 ) 2 115 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( m + 4 ) = 9316 3 ( ln 2 ) + 2240 ( ln 2 ) 2 + 9688 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( m + 5 ) = 83843 3 ( ln 2 ) 20160 ( ln 2 ) 2 38743 4 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 1 ) = π 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 3 ) = 3 π 2 4 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 5 ) = 23 π 6 104 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 7 ) = 91 π 10 2116 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 9 ) = 1451 π 70 238192 3675 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( 2 m + 1 ) = 4 3 ( ln 2 ) .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( 2 m + 3 ) = 68 3 ( ln 2 ) + 16 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( 2 m + 5 ) = 724 3 ( ln 2 ) 1504 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( 2 m + 7 ) = 34756 15 ( ln 2 ) + 120464 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m 2 m ( 2 m + 9 ) = 2224364 105 ( ln 2 ) 53963072 3675 .
The remaining sections of the paper are arranged as follows. Twenty results will be established in Section 2 as four lemmas, with five results each. This is accomplished by the findings provided by Sherman [28], as well as 104 results connected to the Apéry-like series in the form of 4 theorems, each comprising 26 results. These findings are presented in Section 3 as generalized hypergeometric functions that could be beneficial for applications. The generalized hypergeometric function p F q exhibits symmetry in the numerator parameters α 1 , α 2 , …, α p , as well as in the denominator parameters β 1 , β 2 , …, β q . This means that every arrangement of the numerator parameters for the generalized hypergeometric function, α 1 , α 2 , …, α p , and every arrangement of the denominator parameters β 1 , β 2 , …, β q , produces the same function. The paper ends with a concluding remark.

2. Main Results

In this section, we first establish 20 results related to the Apéry-like series in the form of 4 lemmas containing 5 results each. These are:
Lemma 1.
For m ∈ N , the following results are true.
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) = π 2 8 π 2 + 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) = 3 π 2 4 9 π 2 + 8 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 3 ) = 45 π 2 16 35 π 2 + 113 4 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 4 ) = 35 π 2 4 329 π 6 + 781 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 5 ) = 1575 π 2 64 309 π 2 + 973 4 .
Lemma 2.
For m ∈ N , the following results are true.
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) = 2 ( l n 2 ) 2 76 27 l n 2 + 8 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) = 48 ( l n 2 ) 2 + 1796 27 l n 2 208 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 3 ) = 720 ( l n 2 ) 2 26950 27 l n 2 + 3113 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 4 ) = 8960 ( l n 2 ) 2 + 335372 27 l n 2 38744 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 5 ) = 100800 ( l n 2 ) 2 3772939 27 l n 2 + 1743443 36 .
Lemma 3.
For m ∈ N , the following results are true.
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) = 1 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) = 2 π + 7 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 5 ) = 28 π 3 + 269 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 7 ) = 158 π 5 + 7481 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 9 ) = 3256 π 35 + 358513 1225 .
Lemma 4.
For m ∈ N , the following results are true.
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) = 20 27 l n 2 + 4 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) = 916 27 l n 2 212 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 5 ) = 16292 27 l n 2 + 3764 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 7 ) = 1094804 135 l n 2 1264772 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 9 ) = 90086812 945 l n 2 + 728506372 11025 .
Proof. 
In the above 4 lemmas, the 20 Apéry-like series were derived in a rather simple manner. Therefore, we chose to establish just one result, for example, (33), and the other results can be established in a similar manner. To establish result (33), we proceeded as follows. Denoting the left-hand side of (33) by S, we have
S = m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) = m = 0 ( m ! ) 2 ( 2 m ) ! 2 m 1 2 1 2 ( 2 m + 1 ) = 1 2 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m 1 2 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 2 m + 1 )
Evaluating the first and second sums with the help of results (1) and (2), we could easily arrive at the right hand side of (33). This completes the proof of the result (33) asserted in Lemma 3. □
Now, we establish as many as 104 results related to the Apéry-like series in the form of 4 theorems containing 26 results each, with the help of the 4 Lemmas presented above. These are as follows.
Theorem 1.
The following 26 Apéry-like series hold true:
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) = 5 π 2 8 + 4 π 6 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 3 ) = 43 π 2 32 17 π 2 105 8 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 4 ) = 23 π 2 8 + 163 π 9 763 27 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 5 ) = 1567 π 2 256 + 77 π 2 965 16 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 3 ) = 33 π 2 16 + 13 π 81 4 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 4 ) = 4 π 2 + 151 π 16 709 18 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 5 ) = 509 π 2 64 + 50 π 941 12 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 3 ) ( m + 4 ) = 95 π 2 16 + 112 π 3 2107 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 3 ) ( m + 5 ) = 1395 π 2 128 + 137 π 2 215 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 4 ) ( m + 5 ) = 1015 π 2 64 + 299 π 3 5633 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) = 23 π 2 32 9 π 2 + 57 8 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 4 ) = 9 π 2 8 127 π 18 + 601 54 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 5 ) = 469 π 2 256 23 π 2 + 869 48 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 3 ) ( m + 4 ) = 49 π 2 32 173 π 18 + 3269 216 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 3 ) ( m + 5 ) = 14617 π 2 512 15 π + 755 32 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 4 ) ( m + 5 ) = 831 π 2 256 367 π 18 + 13847 432 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 3 ) ( m + 4 ) = 31 π 2 16 73 π 6 + 689 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 3 ) ( m + 5 ) = 377 π 2 128 37 π 2 + 349 12 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 4 ) ( m + 5 ) = 253 π 2 64 149 π 6 + 1405 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 3 ) ( m + 4 ) ( m + 5 ) = 635 π 2 128 187 π 6 + 1763 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 4 ) = 13 π 2 32 + 23 π 9 865 216 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 5 ) = 285 π 2 512 + 7 π 2 527 96 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 4 ) ( m + 5 ) = 181 π 2 256 + 40 π 9 3013 432 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 439 π 2 512 + 97 π 18 7309 864 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 129 π 2 128 + 331 π 48 179 18 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 77 π 2 512 217 π 144 + 1283 864 .
Theorem 2.
The following 26 Apéry-like series hold true:
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) = 50 ( ln 2 ) 2 208 3 ( ln 2 ) + 24 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 3 ) = 359 ( ln 2 ) 2 + 1493 3 ( ln 2 ) 345 2 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 4 ) = 8962 3 ( ln 2 ) 2 12424 3 ( ln 2 ) + 38752 27 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 5 ) = 100798 4 ( ln 2 ) 2 + 419207 12 ( ln 2 ) + 581137 48 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 3 ) = 768 ( ln 2 ) 2 + 3194 3 ( ln 2 ) 2905 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 4 ) = 4456 ( ln 2 ) 2 18532 3 ( ln 2 ) + 2164 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 5 ) = 33616 ( ln 2 ) 2 + 139805 3 ( ln 2 ) 436069 27 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 3 ) ( m + 4 ) = 9680 ( ln 2 ) 2 40258 3 ( ln 2 ) + 41857 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 3 ) ( m + 5 ) = 50040 ( ln 2 ) 2 + 416221 6 ( ln 2 ) 576997 24 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 4 ) ( m + 5 ) = 109760 ( ln 2 ) 2 + 456479 3 ( ln 2 ) 1898419 36 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) = 507 ( ln 2 ) 2 + 409 ( ln 2 ) + 2705 18 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 4 ) = 4454 3 ( ln 2 ) 2 308 9 ( ln 2 ) 25684 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 5 ) = 16833 2 ( ln 2 ) 2 46671 4 ( ln 2 ) + 582289 144 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 3 ) ( m + 4 ) = 10016 3 ( ln 2 ) 2 + 4639 ( ln 2 ) 86819 54 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 3 ) ( m + 5 ) = 49681 4 ( ln 2 ) 2 137745 8 ( ln 2 ) + 572857 96 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 4 ) ( m + 5 ) = 169121 6 ( ln 2 ) 2 156301 4 ( ln 2 ) + 575617 96 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 3 ) ( m + 4 ) = 5224 ( ln 2 ) 2 + 7242 ( ln 2 ) 22589 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 3 ) ( m + 5 ) = 16424 ( ln 2 ) 2 45537 2 ( ln 2 ) + 1716875 216 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 4 ) ( m + 5 ) = 38072 ( ln 2 ) 2 522779 ( ln 2 ) + 1510763 108 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 3 ) ( m + 4 ) ( m + 5 ) = 59720 ( ln 2 ) 2 165579 2 ( ln 2 ) + 2065847 72 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 4 ) = 5633 3 ( ln 2 ) 2 2603 ( ln 2 ) + 48715 54 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 5 ) = 17455 4 ( ln 2 ) 2 + 1306681 216 ( ln 2 ) 553993 288 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 4 ) ( m + 5 ) = 59311 6 ( ln 2 ) 2 + 54815 4 ( ln 2 ) 2051699 432 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 189199 12 ( ln 2 ) 2 + 174857 8 ( ln 2 ) 164311 108 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 21648 ( ln 2 ) 2 + 60021 2 ( ln 2 ) 748853 72 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( m + 1 ) ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) = 70577 12 ( ln 2 ) 2 65227 8 ( ln 2 ) + 2441419 864 .
Theorem 3.
The following 26 Apéry-like series hold true:
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) = 15 π 2 4 + π 2 1 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 5 ) = 7 π 3 65 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 7 ) = 79 π 15 3703 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 9 ) = 407 π 35 44661 1225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 5 ) = 11 π 3 103 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 7 ) = 37 π 5 1739 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 9 ) = 531 π 35 58323 1225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 5 ) ( 2 m + 7 ) = 167 π 15 7859 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 5 ) ( 2 m + 9 ) = 2197 π 105 724273 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 7 ) ( 2 m + 9 ) = 215 π 7 70897 735 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) = 2 π 3 + 19 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 7 ) = 16 π 15 + 757 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 9 ) = 62 π 35 + 6831 1225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 7 ) = 22 π 15 + 1039 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 9 ) = 244 π 105 + 80581 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 7 ) ( 2 m + 9 ) = 334 π 105 + 110251 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) = 28 π 15 + 1321 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 9 ) = 302 π 105 + 99683 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 7 ) ( 2 m + 9 ) = 136 π 35 + 44879 3675 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 514 π 105 + 169591 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) = π 5 47 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 9 ) = 29 π 105 9551 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 7 ) ( 2 m + 9 ) = 37 π 105 12193 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 3 π 7 989 735 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 53 π 105 17477 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 4 π 105 + 1321 11025 .
Theorem 4.
The following 26 Apéry-like series hold true:
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) = 52 3 ln 2 + 12 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 5 ) = 452 3 ln 2 940 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 7 ) = 210812 225 ln 2 20276 15 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 9 ) = 5 54 ln 2 + 241883501 66150 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 5 ) = 956 3 ln 2 1988 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 7 ) = 30284 15 ln 2 + 104956 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 9 ) = 1668868 105 ln 2 13495668 1225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 5 ) ( 2 m + 7 ) = 65348 15 ln 2 + 679436 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 5 ) ( 2 m + 9 ) = 2486572 105 ln 2 180973868 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 7 ) ( 2 m + 9 ) = 1086116 21 ln 2 5269868 147 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) = 84 ln 2 + 524 9 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 7 ) = 1668 5 ln 2 52028 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 9 ) = 69612 35 ln 2 + 1688796 1225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 7 ) = 3756 5 ln 2 39052 75 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 9 ) = 102948 35 ln 2 + 22477796 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 7 ) ( 2 m + 9 ) = 232188 35 ln 2 + 50696236 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) = 5844 5 ln 2 182284 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 9 ) = 136284 35 ln 2 + 29756428 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 7 ) ( 2 m + 9 ) = 313476 35 ln 2 + 22814924 3675 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 490668 35 ln 2 + 107133116 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) = 1044 5 ln 2 + 32564 225 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 9 ) = 16668 35 ln 2 3639316 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 7 ) ( 2 m + 9 ) = 40644 35 ln 2 8874268 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 12924 7 ln 2 2821844 2205 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 88596 35 ln 2 19344172 11025 .
m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) = 11988 35 ln 2 + 872492 3675 .
Proof. 
In the above 4 theorems, the 104 Apéry-like series were derived in a rather simple manner. Because of this, we chose to establish just one result, say (146), and the other results can be established in a similar manner. Thus, in order to establish result (146), we proceeded as follows. Denoting the left-hand side of (146) by S, we have
S = m = 0 ( m ! ) 2 ( 2 m ) ! ( 1 ) m m 2 m ( 2 m + 1 ) ( 2 m + 3 ) ( 2 m + 5 ) ( 2 m + 7 ) ( 2 m + 9 ) .
Using partial fraction technique, we have
S = m = 0 ( m ! ) 2 ( 1 ) m m ( 2 m ) ! 2 m 1 384 ( 2 m + 1 ) 1 96 ( 2 m + 3 ) + 1 64 ( 2 m + 5 ) 1 96 ( 2 m + 7 ) + 1 384 ( 2 m + 9 ) .
Now, separating this into five series, we have
S = 1 384 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 1 ) m m ( 2 m + 1 ) 1 96 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 1 ) m m ( 2 m + 3 ) + 1 64 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 1 ) m m ( 2 m + 5 ) 1 96 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 1 ) m m ( 2 m + 7 ) + 1 384 m = 0 ( m ! ) 2 ( 2 m ) ! 2 m ( 1 ) m m ( 2 m + 9 ) .
Finally, using the results (38)–(42), we easily arrive, after some simplification, at the desired right-hand side of (146). This completes the derivation of result (146). We conclude this section by noting that the derivations of rest of the results are fairly straight-forward and are left as an exercise for interested readers. □

3. Results (43)–(146) in Terms of the Generalized Hypergeometric Functions

In this section, we shall express results (43)–(146) in terms of the generalized hypergeometric functions, which may be useful from an applications perspective. These are as follows:
3 F 2 2 , 2 , 2 3 2 , 4 ; 1 2 = 15 4 π 2 + 24 π 36 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 5 ; 1 2 = 43 4 π 2 + 68 π 105 .
4 F 3 2 , 2 , 2 , 5 3 2 , 3 , 6 ; 1 2 = 115 4 π 2 + 1630 9 π 7630 27 .
4 F 3 2 , 2 , 2 , 6 3 2 , 3 , 7 ; 1 2 = 4701 64 π 2 + 462 π 2895 4 .
3 F 2 2 , 2 , 3 3 2 , 5 ; 1 2 = 99 4 π 2 + 156 π 243 .
4 F 3 2 , 2 , 3 , 5 3 2 , 4 , 6 ; 1 2 = 60 π 2 + 2265 16 π 3545 6 .
4 F 3 2 , 2 , 3 , 6 3 2 , 4 , 7 ; 1 2 = 4581 32 π 2 + 900 π 2823 2 .
3 F 2 2 , 2 , 4 3 2 , 6 ; 1 2 = 475 4 π 2 + 2240 3 π 10535 9 .
4 F 3 2 , 2 , 4 , 6 3 2 , 5 , 7 ; 1 2 = 4185 16 π 2 + 1644 π 2580 .
3 F 2 2 , 2 , 5 3 2 , 7 ; 1 2 = 15225 32 π 2 + 2990 π 28165 6 .
3 F 2 2 , 2 , 2 3 2 , 5 ; 1 2 = 69 4 π 2 216 π + 342 .
4 F 3 2 , 2 , 2 , 5 3 2 , 4 , 6 ; 1 2 = 135 4 π 2 635 3 π + 3005 9 .
4 F 3 2 , 2 , 2 , 6 3 2 , 4 , 7 ; 1 2 = 4221 64 π 2 414 π + 2607 4 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 6 ; 1 2 = 245 4 π 2 3460 9 π + 16345 27 .
5 F 4 2 , 2 , 2 , 4 , 6 3 2 , 3 , 5 , 7 ; 1 2 = 43851 32 π 2 720 π + 2265 2 .
4 F 3 2 , 2 , 2 , 5 3 2 , 3 , 7 ; 1 2 = 12465 64 π 2 3670 3 π + 69235 36 .
3 F 2 2 , 2 , 3 3 2 , 6 ; 1 2 = 465 4 π 2 730 π + 3445 3 .
4 F 3 2 , 2 , 3 , 6 3 2 , 5 , 7 ; 1 2 = 3393 16 π 2 1332 π + 2094 .
4 F 3 2 , 2 , 3 , 5 3 2 , 4 , 7 ; 1 2 = 11385 32 π 2 2235 π + 7025 2 .
3 F 2 2 , 2 , 4 3 2 , 7 ; 1 2 = 9525 16 π 2 3740 π + 17630 3 .
3 F 2 2 , 2 , 2 3 2 , 6 ; 1 2 = 195 4 π 2 + 920 3 π 4325 9 .
4 F 3 2 , 2 , 2 , 6 3 2 , 5 , 7 ; 1 2 = 2565 32 π 2 + 504 π 1581 2 .
4 F 3 2 , 2 , 2 , 5 3 2 , 4 , 7 ; 1 2 = 8145 64 π 2 + 800 π 15065 12 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 7 ; 1 2 = 6585 32 π 2 + 3880 3 π 36545 18 .
3 F 2 2 , 2 , 3 3 2 , 7 ; 1 2 = 5805 16 π 2 + 4965 2 π 3580 .
3 F 2 2 , 2 , 2 3 2 , 7 ; 1 2 = 3465 32 π 2 1085 π 6415 6 .
3 F 2 2 , 2 , 2 3 2 , 4 ; 1 8 = 1200 ( ln 2 ) 2 + 1664 ( ln 2 ) 576 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 5 ; 1 8 = 11488 ( ln 2 ) 2 47776 3 ( ln 2 ) + 5520 .
4 F 3 2 , 2 , 2 , 5 3 2 , 3 , 6 ; 1 8 = 358480 3 ( ln 2 ) 2 + 496960 3 ( ln 2 ) 1550080 27 .
4 F 3 2 , 2 , 2 , 6 3 2 , 3 , 7 ; 1 8 = 49209576 ( ln 2 ) 2 1676828 ( ln 2 ) + 581137 .
3 F 2 2 , 2 , 3 3 2 , 5 ; 1 8 = 36864 ( ln 2 ) 2 51104 ( ln 2 ) + 46480 3 .
4 F 3 2 , 2 , 3 , 5 3 2 , 4 , 6 ; 1 8 = 267360 ( ln 2 ) 2 + 370640 ( ln 2 ) 129840 .
3 F 2 2 , 2 , 3 , 6 3 2 , 4 , 7 ; 1 8 = 2420352 ( ln 2 ) 2 3355320 ( ln 2 ) + 3488552 3 .
3 F 2 2 , 2 , 4 3 2 , 6 ; 1 8 = 774400 ( ln 2 ) 2 + 3220640 3 ( ln 2 ) 3348560 9 .
4 F 3 2 , 2 , 4 , 6 3 2 , 5 , 7 ; 1 8 = 4803840 ( ln 2 ) 2 6659536 ( ln 2 ) + 2307988 .
3 F 2 2 , 2 , 5 3 2 , 7 ; 1 8 = 13171200 ( ln 2 ) 2 18259160 ( ln 2 ) + 18984190 3 .
3 F 2 2 , 2 , 2 3 2 , 5 ; 1 8 = 48672 ( ln 2 ) 2 39264 ( ln 2 ) 43280 3 .
4 F 3 2 , 2 , 2 , 5 3 2 , 4 , 6 ; 1 8 = 176240 ( ln 2 ) 2 244320 ( ln 2 ) + 762080 9 .
4 F 3 2 , 2 , 2 , 6 3 2 , 4 , 7 ; 1 8 = 1211976 ( ln 2 ) 2 + 1680156 ( ln 2 ) 582289 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 6 ; 1 8 = 16022560 3 ( ln 2 ) 2 742240 ( ln 2 ) + 6945520 27 .
5 F 4 2 , 2 , 2 , 4 , 6 3 2 , 3 , 5 , 7 ; 1 8 = 2384688 ( ln 2 ) 2 + 3305880 ( ln 2 ) 1145714 .
4 F 3 2 , 2 , 2 , 5 3 2 , 3 , 7 ; 1 8 = 6764840 ( ln 2 ) 2 + 9378060 ( ln 2 ) 2878085 .
3 F 2 2 , 2 , 3 3 2 , 6 ; 1 8 = 1253760 ( ln 2 ) 2 1738080 ( ln 2 ) + 1807120 3 .
4 F 3 2 , 2 , 3 , 6 3 2 , 5 , 7 ; 1 8 = 4730112 ( ln 2 ) 2 + 6557328 ( ln 2 ) 6867500 3 .
4 F 3 2 , 2 , 3 , 5 3 2 , 4 , 7 ; 1 8 = 13705920 ( ln 2 ) 2 + 19000440 ( ln 2 ) 15107630 3 .
3 F 2 2 , 2 , 4 3 2 , 7 ; 1 8 = 28665600 ( ln 2 ) 2 + 39738960 ( ln 2 ) 41316940 3 .
4 F 3 2 , 2 , 2 , 5 3 2 , 5 , 6 ; 1 8 = 901280 ( ln 2 ) 2 + 1249440 ( ln 2 ) 3897200 9 .
4 F 3 2 , 2 , 2 , 6 3 2 , 5 , 7 ; 1 8 = 2513520 ( ln 2 ) 2 10453448 3 ( ln 2 ) + 1107986 .
4 F 3 2 , 2 , 2 , 5 3 2 , 4 , 7 ; 1 8 = 7117320 ( ln 2 ) 2 9866700 ( ln 2 ) + 10258495 3 .
4 F 3 2 , 2 , 2 , 4 3 2 , 3 , 7 ; 1 8 = 15135920 ( ln 2 ) 2 20982840 ( ln 2 ) + 13144880 9 .
3 F 2 2 , 2 , 3 3 2 , 7 ; 1 8 = 31173120 ( ln 2 ) 2 43215120 ( ln 2 ) + 14977060 .
3 F 2 2 , 2 , 2 3 2 , 7 ; 1 8 = 16938480 ( ln 2 ) 2 + 23481720 ( ln 2 ) 24414190 3 .
2 F 1 2 , 2 7 2 ; 1 2 = 15 π 45 .
3 F 2 2 , 2 , 7 2 5 2 , 9 2 ; 1 2 = 49 π 455 3 .
3 F 2 2 , 2 , 9 2 5 2 , 11 2 ; 1 2 = 711 5 π 11109 25 .
3 F 2 2 , 2 , 11 2 5 2 , 13 2 ; 1 2 = 13431 35 π 1473813 1225 .
3 F 2 2 , 2 , 5 2 3 2 , 9 2 ; 1 2 = 385 3 π 3605 9 .
4 F 3 2 , 2 , 5 2 , 9 2 3 2 , 7 2 , 11 2 ; 1 2 = 333 π 5217 5 .
4 F 3 2 , 2 , 5 2 , 11 2 3 2 , 7 2 , 13 2 ; 1 2 = 5841 7 π 641553 245 .
3 F 2 2 , 2 , 7 2 3 2 , 11 2 ; 1 2 = 3507 5 π 55013 25 .
4 F 3 2 , 2 , 7 2 , 11 2 3 2 , 9 2 , 13 2 ; 1 2 = 24167 15 π 7967003 1575 .
3 F 2 2 , 2 , 9 2 3 2 , 13 2 ; 1 2 = 21285 7 π 2339601 245 .
2 F 1 2 , 2 9 2 ; 1 2 = 70 π + 665 3 .
3 F 2 2 , 2 , 9 2 7 2 , 11 2 ; 1 2 = 144 π + 2271 5 .
3 F 2 2 , 2 , 11 2 7 2 , 13 2 ; 1 2 = 2046 7 π + 225423 245 .
3 F 2 2 , 2 , 7 2 5 2 , 11 2 ; 1 2 = 1386 5 π + 21819 25 .
4 F 3 2 , 2 , 7 2 , 11 2 5 2 , 9 2 , 13 2 ; 1 2 = 2684 5 π + 886391 525 .
3 F 2 2 , 2 , 9 2 5 2 , 13 2 ; 1 2 = 33066 35 π + 3638283 1225 .
3 F 2 2 , 2 , 5 2 3 2 , 11 2 ; 1 2 = 588 π + 9247 5 .
4 F 3 2 , 2 , 5 2 , 11 2 3 2 , 9 2 , 13 2 . ; 1 2 = 3322 3 π + 1096513 315 .
4 F 3 2 , 2 , 5 2 , 9 2 3 2 , 7 2 , 13 2 ; 1 2 = 13464 7 π + 1481007 245 .
3 F 2 2 , 2 , 7 2 3 2 , 13 2 ; 1 2 = 16962 5 π + 1865501 175 .
2 F 1 2 , 2 11 2 ; 1 2 = 189 π + 2961 5 .
3 F 2 2 , 2 , 11 2 9 2 , 13 2 ; 1 2 = 319 π 105061 105 .
4 F 3 2 , 2 , 9 2 , 11 2 7 2 , 11 2 , 13 2 ; 1 2 = 3663 7 π 402369 245 .
3 F 2 2 , 2 , 7 2 3 2 , 13 2 ; 1 2 = 297 π 32637 35 .
4 F 3 2 , 2 , 5 2 3 2 , 13 2 ; 1 2 = 1749 π 192247 35 .
2 F 1 2 , 2 13 2 ; 1 2 = 43593 35 π 396 .
2 F 1 2 , 2 7 2 ; 1 8 = 1040 ( ln 2 ) 720 .
3 F 2 2 , 2 , 7 2 5 2 , 9 2 ; 1 8 = 12656 ( ln 2 ) 26320 3 .
3 F 2 2 , 2 , 9 2 5 2 , 11 2 ; 1 8 = 2529744 25 ( ln 2 ) + 729936 5 .
3 F 2 2 , 2 , 11 2 5 2 , 13 2 ; 1 8 = 110 9 ( ln 2 ) 5321437022 11025 .
3 F 2 2 , 2 , 5 2 3 2 , 9 2 1 8 = 133840 3 ( ln 2 ) + 278320 9 .
4 F 3 2 , 2 , 5 2 , 9 2 3 2 , 7 2 , 11 2 ; 1 8 = 363408 ( ln 2 ) 1259472 5 .
4 F 3 2 , 2 , 5 2 , 11 2 3 2 , 7 2 , 13 2 ; 1 8 = 73430192 21 ( ln 2 ) + 593809392 245 .
3 F 2 2 , 2 , 7 2 3 2 , 11 2 ; 1 8 = 5489232 5 ( ln 2 ) 19024208 25 .
4 F 3 2 , 2 , 7 2 , 11 2 3 2 , 9 2 , 13 2 ; 1 8 = 109409168 15 ( ln 2 ) 7962850192 1575 .
3 F 2 2 , 2 , 9 2 3 2 , 13 2 ; 1 8 = 143367312 7 ( ln 2 ) + 695622576 49 .
2 F 1 2 , 2 9 2 ; 1 8 = 35280 ( ln 2 ) 73360 3 .
3 F 2 2 , 2 , 9 2 7 2 , 11 2 ; 1 8 = 180144 ( ln 2 ) + 624336 5 .
3 F 2 2 , 2 , 11 2 7 2 , 13 2 ; 1 8 = 9188784 7 ( ln 2 ) 222921072 245 .
3 F 2 2 , 2 , 7 2 5 2 , 11 2 ; 1 8 = 2839536 5 ( ln 2 ) + 9841104 25 .
4 F 3 2 , 2 , 7 2 , 11 2 5 2 , 9 2 , 13 2 ; 1 8 = 13589136 5 ( ln 2 ) 989023024 525 .
3 F 2 2 , 2 , 9 2 5 2 , 13 2 ; 1 8 = 275839344 35 ( ln 2 ) 6691903152 1225 .
3 F 2 2 , 2 , 5 2 3 2 , 11 2 ; 1 8 = 1472688 ( ln 2 ) + 5103952 5 .
4 F 3 2 , 2 , 5 2 , 11 2 3 2 , 9 2 , 13 2 ; 1 8 = 5996496 ( ln 2 ) 1309282832 315 .
4 F 3 2 , 2 , 5 2 , 9 2 3 2 , 7 2 , 13 2 1 8 = 124136496 7 ( ln 2 ) 3011569968 245 .
3 F 2 2 , 2 , 7 2 3 2 , 13 2 ; 1 8 = 194304528 5 ( ln 2 ) 4713857104 175 .
2 F 1 2 , 2 11 2 ; 1 8 = 789264 ( ln 2 ) 2735376 5 .
3 F 2 2 , 2 , 11 2 9 2 , 13 2 ; 1 8 = 2200176 ( ln 2 ) + 160129904 105 .
4 F 3 2 , 2 , 9 2 , 11 2 7 2 , 11 2 , 13 2 ; 1 8 = 48285072 7 ( ln 2 ) + 1171403376 245 .
3 F 2 2 , 2 , 7 2 3 2 , 13 2 ; 1 8 = 15353712 ( ln 2 ) + 372483408 35 .
4 F 3 2 , 2 , 5 2 3 2 , 13 2 ; 1 8 = 35084016 ( ln 2 ) + 851143568 35 .
2 F 1 2 , 2 13 2 ; 1 8 = 14241744 ( ln 2 ) 345506832 35 .
Proof. 
The derivation of these mentioned results is quite straightforward, so we chose to establish only one of the results, say (156). To establish result (156), we proceeded as follows. We start with result (52), viz.
m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 4 ) ( m + 5 ) = 1015 π 2 64 + 299 π 3 5633 36 .
Denoting the left-hand side of (251) by S, we obtain
S = m = 0 ( m ! ) 2 ( 2 m ) ! m 2 m ( m + 4 ) ( m + 5 ) .
Now, using m = N + 1 , convert all expressions in terms of the Pochhammer’s symbol; after some simplification, we obtained
S = 1 30 N = 0 ( 2 ) N ( 2 ) N ( 5 ) N 2 N ( 1 ) N ( 3 2 ) N ( 7 ) N = 1 30 3 F 2 2 , 2 , 5 ; 1 2 3 2 , 7
Finally, equating (251) and (252), we obtained result (156). Other results can be established in a similar way. Therefore, we prefer to omit the details. □

4. Concluding Remark

In this paper, we first developed 20 results in the form of 4 lemmas with 5 results each. This was accomplished using the findings provided by Sherman. By applying the results given in the 4 lemmas, we obtained 104 results related to the Apéry-like series in the form of 4 theorems containing 26 results each. These findings are finally described in terms of generalized hypergeometric functions and we believe that this study is novel to the literature and could make significant contributions to the theories of generalized hypergeometric functions and combinatorics. The findings presented in the research are straightforward, intriguing, and simple to verify.
We conclude this paper by noting that all the results given in this paper have been verified numerically by Mathematica.

Author Contributions

Writing—original draft, P.J., D.L. and A.K.R.; Writing—review and editing, P.J., D.L. and A.K.R.; Funding acquisition, D.L. All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

The author Dongkyu Lim was partially supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1010902, Republic of Korea.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
  2. Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
  3. NIST Handbook of Mathematical Functions; Olver, F.W.; Lozier, D.W.; Boisvert, R.v.F.; Clark, C.W. (Eds.) Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
  4. Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
  5. Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
  6. Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
  7. Riordan, J. Combinatorial Identities; Wiley: Hoboken, NJ, USA, 1968. [Google Scholar]
  8. Gould, H.W. Combinatorial Identities, Published by the Author, Revised edition. 1972.
  9. Lehmer, D.H. Interesting series involving the central binomial coefficient. Am. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
  10. Leshchiner, D. Some New Identities for ζ (k). J. Number Theory 1981, 13, 355–362. [Google Scholar] [CrossRef]
  11. Mansour, T. Combinatorial identities and inverse binomial coefficients. Adv. Appl. Math. 2002, 28, 196–202. [Google Scholar] [CrossRef]
  12. Pla, J. The Sum of Inverses of Binomial Coefficients Revisited. Fibonacci Q. 1997, 35, 342–345. [Google Scholar]
  13. Sprugnoli, R. Riordan arrays and combinatorial sums. Discret. Math. 1994, 132, 267–290. [Google Scholar] [CrossRef]
  14. Sprugnoli, R. Sums of Reciprocals of the Central Binomial coefficients. Integers Electron. J. Combin. Number Theory 2006, 6, A27. [Google Scholar]
  15. Sury, B. Sum of the Reciprocals of the Binomial Coefficients. Eur. J. Comb. 1993, 14, 351–353. [Google Scholar] [CrossRef]
  16. Sury, B.; Wang, T.; Zhao, F.Z. Identities Involving Reciprocals of Binomial coefficients. J. Integer Seq. 2004, 7, 1–12. [Google Scholar]
  17. Trif, T. Combinatorial Sums and Series Involving Inverses of Binomial Coefficients. Fibonacci Q. 2000, 38, 79–84. [Google Scholar]
  18. Wheelon, A.D. On the Summation of Infinite Series in Closed Form. J. Appl. Phys. 1954, 25, 113–118. [Google Scholar] [CrossRef]
  19. Zhao, F.Z.; Wang, T. Some Results for Sums of the Inverses of Binomial Coefficients. Integers 2005, 5, A22. [Google Scholar]
  20. Kumar, B.R.; Kılıçman, A.; Rathie, A.K. Applications of Lehmer’s Infinite Series Involving Reciprocals of the Central Binomial Coefficients. J. Funct. Spaces 2022, 2022, 1408543. [Google Scholar] [CrossRef]
  21. Zhang, L.; Ji, W. The Series of Reciprocals of Non-Central Binomial Coefficients. Am. J. Comput. Math. 2013, 3, 31–37. [Google Scholar] [CrossRef]
  22. Cristea, V.G. A New Asymptotic Series and Estimates Related to Euler Mascheroni Constant. Constr. Math. Anal. 2020, 3, 1–8. [Google Scholar] [CrossRef]
  23. Apéry, R. Irrationalité de ζ (2) et ζ (3). J. Arith. Luminy 1979, 61, 11–13. [Google Scholar]
  24. Van der Poorten, A. Some wonderful formulae... Footnotes to Apéry’s proof of the irrationality of ζ(3), Séminaire Delange-Pisot-Poitou. Théorie Nombres 1978–1979, 20, 1–7. [Google Scholar]
  25. Borwein, J.; Broadhurst, D.; Kamnitzer, J. Central Binomial Sums and Multiple Clausen Values (with Connections to Zeta Values). Exp. Math. 2001, 10, 25–34. [Google Scholar] [CrossRef]
  26. Berndt, B.C.; Joshi, P.T. Chapter 9 of Ramanujan’s Second Notebook, Volume 23 of Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 1983. [Google Scholar]
  27. Zucker, I.J. On the series ∑k=1(k2k)−1k−n and related sums. J. Number Theory 1985, 20, 92–102. [Google Scholar] [CrossRef]
  28. Sherman, T. Summation of Glaisher and Apéry-like Series. 2000. Available online: https://www.researchgate.net/publication/228757956_Summation_of_Glaisher_and_Apery-like_series (accessed on 1 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Jayarama, P.; Lim, D.; Rathie, A.K. On Several Results Associated with the Apéry-like Series. Symmetry 2023, 15, 1022. https://doi.org/10.3390/sym15051022

AMA Style

Jayarama P, Lim D, Rathie AK. On Several Results Associated with the Apéry-like Series. Symmetry. 2023; 15(5):1022. https://doi.org/10.3390/sym15051022

Chicago/Turabian Style

Jayarama, Prathima, Dongkyu Lim, and Arjun K. Rathie. 2023. "On Several Results Associated with the Apéry-like Series" Symmetry 15, no. 5: 1022. https://doi.org/10.3390/sym15051022

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop