Inexact Iterates of Nonexpansive Mappings with Summable Errors in Metric Spaces with Graphs
Abstract
:1. Introduction
2. The Main Result
3. An Auxiliary Result
4. Proof of Theorem 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betiuk-Pilarska, A.; Benavides, T.D. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. In Fixed Point Theory and Its Applications; Yokohama Publishers: Yokohama, Japan, 2006; pp. 11–32. [Google Scholar]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Ostrowski, A.M. The round-off stability of iterations. Z. Angew. Math. Mech. 1967, 47, 77–81. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G.; Yao, J.-C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G.; Yao, J.-C. Graph contractions in vector-valued metric spaces and applications. Optimization 2021, 70, 763–775. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Convergence of inexact iterates of nonexpansive mappings with summable errors in metric spaces with graphs. 2023; submitted. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Convergence of inexact iterates of strict contractions in metric spaces with graphs. J. Appl. Numer. Optim. 2022, 4, 215–220. [Google Scholar]
- Aleomraninejad, S.M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point of ϕ-contraction in metric spaces endowed with a graph. An. Univ. Craiova Ser. Mat. Inform. 2010, 37, 85–92. [Google Scholar]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Vulikh, B.Z. Introduction to the Theory of Cones in Normed Spaces; Kalinin: Kalinin State Univ, Russia, 1977. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, S.; Zaslavski, A.J. Inexact Iterates of Nonexpansive Mappings with Summable Errors in Metric Spaces with Graphs. Symmetry 2023, 15, 1927. https://doi.org/10.3390/sym15101927
Reich S, Zaslavski AJ. Inexact Iterates of Nonexpansive Mappings with Summable Errors in Metric Spaces with Graphs. Symmetry. 2023; 15(10):1927. https://doi.org/10.3390/sym15101927
Chicago/Turabian StyleReich, Simeon, and Alexander J. Zaslavski. 2023. "Inexact Iterates of Nonexpansive Mappings with Summable Errors in Metric Spaces with Graphs" Symmetry 15, no. 10: 1927. https://doi.org/10.3390/sym15101927