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Abstract: In our joint work with Dan Butnariu (2006) we established the stability of the convergence
of iterates of a nonexpansive mapping on a complete metric space in the presence of summable
computational errors. In a recent paper of ours, we extended this result to inexact iterates of
nonexpansive mappings on complete metric spaces with graphs under a certain assumption on the
iterates. In the present paper we obtain an analogous result by removing that assumption on the
iterates and replacing it with an additional assumption on the graph.
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1. Introduction

During the last sixty years, many interesting developments have taken place in the
fixed point theory of nonlinear mappings [1–13]. The origin of these investigations is
Banach’s classical work [14]. Since Banach’s celebrated theorem, many important and
interesting results have been obtained in this field, including results on common fixed
point problems, feasibility, iterative projection algorithms, and variational inequalities.
In addition to their own importance, these results have numerous useful applications in
various areas of research [13,15–18].

In [2], the authors considered a nonexpansive mapping acting on a complete metric
space under the assumption that every sequence of its iterates converges to a fixed point. It
was shown there that every sequence of inexact iterates of such a mapping with summable
errors converges to a fixed point as well. This result is a generalization of a classical result of
Ostrowski [8], which was obtained for strict contractions. In [19], we established an analog
of this result for nonexpansive mappings acting on complete metric spaces with graphs
under a certain assumption on the iterates. This result is an extension of an analogous
theorem which was proved in [20] for strict contractions. In this connection, note that the
investigation of mappings in metric spaces with graphs is now of great research interest
[5,9,10,21–24]. In the present work, we obtain an analog of the main result of [19] by
removing the assumption on the iterates and replacing it with an additional assumption on
the graph.

At this point, it is worth recalling that the study of the behavior of inexact iterates is
very important, as computational errors are always produced in calculations. Therefore,
this has been and continues to be an important topic in analysis, beginning with the seminal
paper [8], though see [2,13] as well.

Let (X, ρ) be a complete metric space and let G be a graph. We assume that the set of
vertices V(G) of G is contained in the space X, its set of edges E(G) is a closed subset of the
space X× X endowed with the product metric, and that the following assumption holds.

(A1) For each pair of points u, v ∈ X, if (u, v) ∈ E(G), then (T(u), T(v)) ∈ E(G) and
the inequality

ρ(T(u), T(v)) ≤ ρ(u, v)
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is true.
Assumption (A1) appears in [21] (see [22,23]).
For each ξ ∈ X and every E ⊂ X, put

ρ(ξ, E) := inf{ρ(ξ, η) : η ∈ E}.

For every ξ ∈ X and every ∆ > 0, set

B(ξ, ∆) := {η ∈ X : ρ(ξ, η) ≤ ∆}.

For each map G : X → X, let G0η = η for all η ∈ X.
In [19], we established the following result.

Theorem 1. Assume that a sequence {xi}∞
i=0 ⊂ X satisfies

(T(xi), xi+1) ∈ E(G), i = 0, 1, . . .

and
∞

∑
i=0

ρ(T(xi), xi+1) < ∞,

and that a subsequence {xik}
∞
k=1 is given. Then, the following assertions hold.

1. Assume that for each integer k, the sequence {T j(xik )}
∞
j=1 converges. Then, there exists

x∗ = lim
i→∞

xi,

(x∗, T(x∗)) ∈ E(G), and if T is continuous at the point x∗, then T(x∗) = x∗.
2. Assume that there exists a nonempty set F such that for each integer k ≥ 1,

lim
j→∞

ρ(T j(xik ), F) = 0.

Then,
lim
i→∞

ρ(xi, F) = 0.

3. Assume that for each integer k ≥ 1 there exists a nonempty compact set Ek ⊂ X such that

lim
j→∞

ρ(T j(xik ), Ek) = 0.

Then, there exists a nonempty compact set E ⊂ X such that limi→∞ ρ(xi, E) = 0.

In our work, we obtain an extension of this result without assuming that

(T(xi), xi+1) ∈ E(G), i = 0, 1, . . . .

Instead, we assume that a certain property of the graph is satisfied (see (A2) in the next
section).

2. The Main Result

We use all the definitions and notations from Section 1 and assume that all the assump-
tions introduced in Section 1 hold. We then prove the following result.

Theorem 2. Assume that a sequence {xi}∞
i=0 ⊂ X satisfies

∞

∑
i=0

ρ(T(xi), xi+1) < ∞, (1)
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c0 ≥ 1, r0 ∈ (0, 1] and that the following assumption holds.
(A2) for each integer i ≥ 0 and each point z ∈ B(xi, r0), there exists

ξ ∈ B(xi, c0ρ(z, xi))

such that
(xi, ξ), (z, ξ) ∈ E(G).

Let a subsequence {xik}
∞
k=1 be given; then, the following assertions hold true:

1. Assume that the sequence {T j(xik )}
∞
j=1 converges for each integer k. Then, there exists

x∗ = lim
i→∞

xi,

(x∗, T(x∗)) ∈ E(G), and if T is continuous at the point x∗, then T(x∗) = x∗.
2. Assume that there exists a nonempty set F such that, for each integer k ≥ 1,

lim
j→∞

ρ(T j(xik ), F) = 0.

Then,
lim
i→∞

ρ(xi, F) = 0.

3. Assume that for each integer k ≥ 1 there exists a nonempty compact set Ek ⊂ X such that

lim
j→∞

ρ(T j(xik ), Ek) = 0.

Then, there exists a nonempty compact set E ⊂ X such that limi→∞ ρ(xi, E) = 0.

Example 1. Assume that (Z, ‖ · ‖) is a Banach space ordered by a closed convex cone Z+ (x ≤ y
for x, y ∈ Z if and only if y− x ∈ Z+) such that

Z+ − Z+ = Z.

Then, per the Krein–Shmulyan theorem [25], there exists c0 > 0 such that for each z ∈ Z there exist
points z1, z2 ∈ Z+ such that

z = z1 − z2, ‖zi‖ ≤ c0‖z‖, i = 1, 2.

Let V = X be a nonempty closed subset of Z, with (x, y) ∈ E(G) if and only if y ≥ x and
ρ(x, y) = ‖x− y‖, x, y ∈ X.

Assume that r0 ∈ (0, 1], c0 ≥ 1, {xi}∞
i=0 ⊂ X and that

B(xi, c0r0) ⊂ X, i = 0, 1, . . . .

Assume that i ≥ 0 is an integer and that z ∈ X satisfies

‖z− xi‖ ≤ r0.

Then, there exist v1, v2 ∈ Z+ such that

z− x2 = v2 − v1, ‖vj‖ ≤ c0‖z− xi‖, j = 1, 2.

We now have
z = xi + v2 − v1 ≤ xi + v2,

xi ≤ xi + v2.

Setting
ξ = xi + v2,
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it is easy to see that
ρ(xi, ξ) = ‖v2‖ ≤ c0‖z− xi‖ = ρ(z, xi)c0,

and that
ρ(xi, ξ) = ‖v2‖ ≤ c0‖z− xi‖ ≤ c0r0.

Thus, (A2) holds.

3. An Auxiliary Result

Lemma 1. Assume that a sequence {xi}∞
i=0 satisfies

∞

∑
i=0

ρ(T(xi), xi+1) < ∞

and that there exist numbers c0 ≥ 1 and r0 ∈ (0, 1] such that (A2) holds. Let q ≥ 0 be an integer
such that

∞

∑
i=q

ρ(T(xi), xi+1) < r0. (2)

Then, for each integer n ≥ 1,

ρ(xn+q, Tn(xq)) ≤ (2c0 + 1)
n−1

∑
i=0

ρ(T(xq+i), xq+i+1).

Proof. Setting
yq,0 = xq, (3)

yq+1,0 = T(yq,0), yq+1,1 = xq+1, (4)

per (2)–(4) we have
ρ(yq+1,0, xq+1) ≤ ρ(T(xq), xq+1) < r0. (5)

Assumption (A2) and (5) imply that there exists yq+1,1 ∈ X such that

(xq+1, yq+1,1) ∈ E(G), (yq+1,0, yq+1,1) ∈ E(G), (6)

ρ(xq+1, yq+1,1) ≤ c0ρ(xq+1, yq+1,0) ≤ c0r0. (7)

Per (3), (4), and (7), we have

ρ(yq+1,1, yq+1,0) ≤ ρ(xq+1, yq+1,1) + ρ(xq+1, yq+1,0),

≤ (c0 + 1)ρ(xq+1, yq+1,0) = (c0 + 1)ρ(xq+1, T(xq)). (8)

Setting
yq+1,2 = xq+1, (9)

assume that n ≥ 1 is a natural number and that we have defined

yq+n,i ∈ X, i = 0, . . . , 2n,

such that
yq+n,0 = Tn(xq), yq+n,2n = xq+n (10)

for each i ∈ {0, . . . , 2n− 1} and at least one of the following relations holds:

(yq+n,i, yq+n,i+1) ∈ E(G), (yq+n,i+1, yq+n,i) ∈ E(G), (11)

ρ(yq+n,2n, yq+n,2n−1) ≤ c0ρ(xq+n, T(xq+n−1)), (12)

ρ(yq+n,2n−1, yq+n,2n−2) ≤ (c0 + 1)ρ(xq+n, T(xq+n−1)), (13)
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and

ρ(xq+n, Tn(xq)) ≤
2n−1

∑
i=0

ρ(yq+n,i, yq+n,i+1),

≤ (2c0 + 1)
n−1

∑
i=0

(xq+i+1, T(xq+i)). (14)

In view of (2)–(4) and (6)–(9), our assumption holds for n = 1. We now define
yq+n+1,i ∈ X, i = 0, . . . , 2n + 2. For i = 0, . . . , 2n− 1, set

yq+n+1,i = T(yq+n,i). (15)

Assumption (A1), (10), and (15) imply that for i = 0, . . . , 2n− 1 at least one of the following
two inclusions holds:

(yq+n+1,i, yq+n+1,i+1) ∈ E(G), (yq+n+1,i+1, yq+n+1,i) ∈ E(G), (16)

ρ(yq+n+1,i, yq+n+1,i+1) ≤ ρ(yq+n,i, yq+n,i+1), (17)

yq+n+1,0 = Tn+1(xq), (18)

and
yq+n+1,2n = T(xq+n). (19)

In view of (2),
ρ(T(xq+n), xq+n+1) < r0. (20)

Assumption (A2), (19), and (20) imply that there exists

yq+n+1,2n+1 ∈ X

such that
(yq+n+1,2n, yq+n+1,2n+1) ∈ E(G), (21)

(T(xq+n), yq+n+1,2n+1) ∈ E(G), (22)

(xq+n+1, yq+n+1,2n+1) ∈ E(G), (23)

and
ρ(xq+n+1, yq+n+1,2n+1) ≤ c0ρ(xq+n+1, T(xq+n)). (24)

Setting
yq+n+1,2n+2 = xq+n+1, (25)

per (24) and (25) we have

ρ(yq+n+1,2n+2, yq+n+1,2n+1) ≤ c0ρ(xq+n+1, T(xq+n)). (26)

It follows from (19), (25), and (26) that

ρ(yq+n+1,2n+1, yq+n+1,2n),

≤ ρ(yq+n+1,2n+1, xq+n+1) + ρ(xq+n+1, T(xq+n)),

≤ (c0 + 1)ρ(xq+n+1, T(xq+n)). (27)

It now follows from (14), (18), and (25)–(27) that

ρ(Tn+1(xq), xq+n+1) = ρ(yq+n+1,0, yq+n+1,2n+2),

≤
2n+1

∑
i=0

ρ(yq+n+1,i, yq+n+1,i+1),
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=
2n−1

∑
i=0

ρ(yq+n+1,i, yq+n+1,i+1),

+ρ(yq+n+1,2n, yq+n+1,2n+1) + ρ(yq+n+1,2n+1, yq+n+1,2n+2),

≤
2n−1

∑
i=0

ρ(yq+n,i, yq+n,i+1),

+(2c0 + 1)ρ(T(xq+n), xq+n+1),

≤ (2c0 + 1)
n

∑
i=0

ρ(xq+i+1, T(xq+i)). (28)

Per (18), (23), and (25)–(28), the assumption made for n holds for n + 1 as well. Thus, using
induction, for each integer n ≥ 1 we have defined yq+n,i ∈ X, i = 0, . . . , 2n, such that
(10)–(14) hold. This completes the proof of Lemma 1.

4. Proof of Theorem 2

Let
ε ∈ (0, r0/2). (29)

Per (1), there exists an integer k ≥ 1 such that

∞

∑
j=ik−1

ρ(xj+1, T(xj)) < (2c0 + 1)−1ε/4. (30)

Lemma 1 and inequality (30) imply that for each integer n ≥ 1, we have

ρ(xn+ik , Tn(xik )) ≤ (2c0 + 1)
ik+n−1

∑
j=ik

ρ(T(xj), xj+1) < ε/4. (31)

We first prove Assertion 1. There exists

yk = lim
j→∞

T j(xik ).

Per (31), for all sufficiently large natural numbers n,

ρ(xn+ik , yk) ≤ ρ(yk, Tn(xik )) + ρ(Tn(xik ), xik+n) < ε.

Because ε is an arbitrary sufficiently small positive number, we conclude that {xn}∞
n=0 is a

Cauchy sequence and that there exists the limit

x∗ = lim
n→∞

xn.

It follows from (1) that
x∗ = lim

i→∞
T(xi).

Because the set E(G) is closed, Assumption (A2) implies that

(x∗, x∗) ∈ E(G).

If the mapping T is continuous at the point x∗, then we have T(x∗) = x∗. Assertion 1 is
proved.

Next, we prove Assertion 2. Based on our assumptions,

lim
j→∞

ρ(T j(xik ), F) = 0.
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When combined with (31), this implies that for each sufficiently large natural number n we
have

ρ(xn+ik , F) ≤ ρ(xn+ik , Tn(xik )) + ρ(Tn(xik ), F) < ε.

Because ε is an arbitrary sufficiently small positive number, we can conclude that

lim
i→∞

ρ(xi, F) = 0.

Assertion 2 is proved.
Finally, we prove Assertion 3. There exists a compact set E0 ⊂ X such that

lim
n→∞

ρ(Tn(xk), E0) = 0.

Per (31), for each sufficiently large natural number n we have

ρ(xn+ik , E0) ≤ ρ(xn+ik , Tn(xik )) + ρ(Tn(xik ), E0) < ε.

Thus, we have shown that there exists a compact set E0 such that

ρ(xn+ik , E0) < ε

for every sufficiently large natural number n. We may assume that E0 is finite. Because ε is
any element of the interval (0, r0/2), this implies that each subsequence of {xi}∞

i=0 has a
convergent subsequence. Denoting the set of all limit points of the sequence {xi}∞

i=0 by E,
it is not difficult to see that E is compact and that

lim
i→∞

ρ(xi, E) = 0.

This completes the proof of Assertion 3 and of Theorem 2 itself.

5. Conclusions

In the present paper, we have shown that if all exact orbits of a nonexpansive self-
mapping of a complete metric space with a graph converge, then this convergence property
holds for all its inexact orbits with summable errors as well. This is an analog of the result
of [2] for inexact iterates of nonexpansive mappings defined on complete metric spaces. In
this connection, we recall that the study of the behavior of inexact iterates is very important,
as computational errors are always present in calculations. Therefore, this is a rapidly
growing area of research, starting with the seminal paper [8] (although see [2,13] and
references mentioned therein as well). Our results show that if all exact iterates converge,
then inexact iterates with summable errors converge as well.
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