Next Article in Journal
Study of a Viscous ΛWDM Model: Near-Equilibrium Condition, Entropy Production, and Cosmological Constraints
Next Article in Special Issue
The Analytical Solutions of Stochastic-Fractional Drinfel’d-Sokolov-Wilson Equations via (G′/G)-Expansion Method
Previous Article in Journal
Dynamic Dual-Threshold Virtual Machine Merging Method Based on Three-Way Decision
Previous Article in Special Issue
Δ–Gronwall–Bellman–Pachpatte Dynamic Inequalities and Their Applications on Time Scales
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

(Δ∇)-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications

by
Ahmed A. El-Deeb
1,*,
Dumitru Baleanu
2,3,* and
Jan Awrejcewicz
4,*
1
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
2
Institute of Space Science, 077125 Magurele, Romania
3
Department of Mathematics, Cankaya University, Ankara 06530, Turkey
4
Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(9), 1867; https://doi.org/10.3390/sym14091867
Submission received: 12 July 2022 / Revised: 18 August 2022 / Accepted: 26 August 2022 / Published: 7 September 2022

Abstract

:
We prove some new dynamic inequalities of the Gronwall–Bellman–Pachpatte type on time scales. Our results can be used in analyses as useful tools for some types of partial dynamic equations on time scales and in their applications in environmental phenomena and physical and engineering sciences that are described by partial differential equations.

1. Introduction

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R . Throughout the article, we assume that T has the topology that it inherits from the standard topology on R . We define the forward jump operator σ : T T for any τ T by
σ ( τ ) : = inf { s T : s > τ } ,
and the backward jump operator ρ : T T for any τ T by
ρ ( τ ) : = sup { s T : s < τ } .
In the preceding two definitions, we set inf = sup T (i.e., if τ is the maximum of T , then σ ( τ ) = τ ) and sup = inf T (i.e., if τ is the minimum of T , then ρ ( τ ) = τ ), where ∅ denotes the empty set.
The set T κ is introduced as follows: If T has a left-scattered maximum ξ 1 , then T κ = T { ξ 1 } ; otherwise, T κ = T .
The interval [ θ , ϑ ] in T is defined by
[ θ , ϑ ] T = { ξ T : θ ξ ϑ } .
We define the open intervals and half-closed intervals similarly.
Assume χ : T R is a function and ξ T κ . Then, χ Δ ( ξ ) R is said to be the delta derivative of χ at ξ if, for any ε > 0 , there exists a neighborhood U of ξ such that, for every s U , we have
| [ χ ( σ ( ξ ) ) χ ( s ) ] χ Δ ( ξ ) [ σ ( ξ ) s ] | ε | σ ( ξ ) s | .
Moreover, χ is said to be delta-differentiable on T κ if it is delta differentiable at every ξ T κ .
In what follows, we will need the set T κ , which is derived from the time scale T as follows: if T has a right-scattered minimum m, then T κ = T { m } . Otherwise, T κ = T .
We introduce the nabla derivative of a function f : T R at a point t T κ as follows.
Let f : T R be a function and let t T κ . We define f ( t ) as the real number (provided that it exists) with the property that, for any ϵ > 0 , there exists a neighborhood N of t (i.e., N = ( t δ , t + δ ) T for some δ > 0 ) such that
| [ f ρ ( t ) f ( s ) ] f ( t ) [ ρ ( t ) s ] | ϵ | ρ ( t ) s | f o r e v e r y s N .
We say that f ( t ) is the nabla derivative of f at t.
Time scale calculus with the objective to unify discrete and continuous analysis was introduced by S. Hilger [1]. For additional subtleties on time scales, we refer the reader to the books by Bohner and Peterson [2,3].
Gronwall–Bellman-type inequalities, which have many applications in qualitative and quantitative behavior, have been developed by many mathematicians, and several refinements and extensions have been applied to the previous results; we refer the reader to the works [4,5,6,7,8,9,10,11,12,13,14]. For other types of dynamic inequalities on time scales, see [15,16,17,18,19,20,21,22,23].
Gronwall–Bellman’s inequality [24] in the integral form stated the following. Let υ and f be continuous and nonnegative functions defined on [ a , b ] , and let υ 0 be a nonnegative constant. Then, the inequality
υ ( t ) υ 0 + a t f ( s ) υ ( s ) d s , for all t [ a , b ] ,
implies that
υ ( t ) υ 0 exp ( a t f ( s ) d s ) , for all t [ a , b ] .
Baburao G. Pachpatte [25] proved the discrete version of (1). In particular, he proved the following: if υ ( n ) , a ( n ) , γ ( n ) are nonnegative sequences defined for n N 0 and a ( n ) is non-decreasing for n N 0 , and if
υ ( n ) a ( n ) + s = 0 n 1 γ ( n ) υ ( n ) , n N 0 ,
then
υ ( n ) a ( n ) s = 0 n 1 [ 1 + γ ( n ) ] , n N 0 .
Bohner and Peterson [2] unify the integral form (2) and the discrete form (1) by introducing a dynamic inequality on a time scale T as follows: if υ , ζ are right-dense continuous functions and γ 0 is a regressive and right-dense continuous function, then
υ ( t ) ζ ( t ) + t 0 t υ ( η ) γ ( η ) Δ η , for all t T ,
which implies
υ ( t ) ζ ( t ) + t 0 t e γ ( t , σ ( η ) ) ζ ( η ) γ ( η ) Δ η , for all t T ,
The authors [26] studied the following result:
Ξ υ ( , t ) a ( , t ) + 0 θ ( ) 0 ϑ ( t ) 1 ( ς , η ) f ( ς , η ) ζ υ ( ς , η ) ϖ υ ( ς , η ) + 0 ς 2 ( χ , η ) ζ υ ( χ , η ) ϖ υ ( χ , η ) d χ d η d ς
where υ , f, C ( I 1 × I 2 , R + ) , a C ( ζ , R + ) are nondecreasing functions, I 1 , I 2 R , θ C 1 ( I 1 , I 1 ) , ϑ C 1 ( I 2 , I 2 ) are nondecreasing with θ ( ) on I 1 , ϑ ( t ) t on I 2 , 1 , 2 C ( ζ , R + ) , and Ξ , ζ , ϖ C ( R + , R + ) with Ξ , ζ , ϖ ( υ ) > 0 for υ > 0 , and lim υ + Ξ ( υ ) = + .
The following theorem was presented by Anderson [27].
φ ( υ ( t , s ) ) a ( t , s ) + c ( t , s ) t 0 t s φ ( υ ( τ , η ) ) [ d ( τ , η ) w ( υ ( τ , η ) ) + b ( τ , η ) ] η Δ τ ,
where υ , a, c, d are nonnegative continuous functions defined for ( t , s ) T × T , and b is a nonnegative continuous function for ( t , s ) [ t 0 , ) T × [ t 0 , ) T and φ C 1 ( R + , R + ) with φ > 0 for υ > 0 .
Theorem 1
([10]). (Leibniz Integral Rule on Time Scales) In the following, by Υ Δ ( r 1 , r 2 ) , we mean the delta derivative of Υ ( r 1 , r 2 ) with respect to r 1 . Similarly, Υ ( r 1 , r 2 ) is understood. If Υ, Υ Δ and Υ are continuous, and u , h : T T are delta-differentiable functions, then the following formulas hold r 1 T κ .
(i) 
u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) Δ r 2 Δ = u ( r 1 ) h ( r 1 ) Υ Δ ( r 1 , r 2 ) Δ r 2 + h Δ ( r 1 ) Υ ( σ ( r 1 ) , h ( r 1 ) ) u Δ ( r 1 ) Υ ( σ ( r 1 ) , u ( r 1 ) ) ;
(ii) 
u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) Δ r 2 = u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) Δ r 2 + h ( r 1 ) Υ ( ρ ( r 1 ) , h ( r 1 ) ) u ( r 1 ) Υ ( ρ ( r 1 ) , u ( r 1 ) ) ;
(iii) 
u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) r 2 Δ = u ( r 1 ) h ( r 1 ) Υ Δ ( r 1 , r 2 ) r 2 + h Δ ( r 1 ) Υ ( σ ( r 1 ) , h ( r 1 ) ) u Δ ( r 1 ) Υ ( σ ( r 1 ) , u ( r 1 ) ) ;
(iv) 
u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) r 2 = u ( r 1 ) h ( r 1 ) Υ ( r 1 , r 2 ) r 2 + h ( r 1 ) Υ ( ρ ( r 1 ) , h ( r 1 ) ) u ( r 1 ) Υ ( ρ ( r 1 ) , u ( r 1 ) ) .
In this article, by employing the results of Theorems 1, we establish the delayed time scale case of the inequalities proven in [26]. Further, these results are proven here to extend some known results in [28,29,30].

2. Auxiliary Result

We prove the following fundamental lemma that will be needed in our main results.
Lemma 1.
Suppose T 1 , T 2 are two times scales and a C ( Ω = T 1 × T 2 , R + ) is nondecreasing with respect to ( , t ) Ω . Assume that ℑ, ϝ, f C ( Ω , R + ) , 1 C 1 T 1 , T 1 and 2 C 1 T 2 , T 2 are nondecreasing functions with 1 ( ) on T 1 , 2 ( t ) t on T 2 . Furthermore, suppose that Ξ, ζ C ( R + , R + ) are nondecreasing functions with Ξ , ζ ( ϝ ) > 0 for ϝ > 0 , and lim ϝ + Ξ ( ϝ ) = + . If ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) Ξ 1 G 1 G a , t + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) Δ η ς
for 0 1 , 0 t t 1 , where
G ( v ) = v 0 v ς ζ Ξ 1 ( ς ) , v v 0 > 0 , G ( + ) = v 0 + ς ζ Ξ 1 ( ς ) = +
and 1 , t 1 Ω is chosen so that
G a , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom G 1 .
Proof. 
Suppose that a , t > 0 . Fixing an arbitrary ( 0 , t 0 ) Ω , we define a positive and nondecreasing function ψ ( , t ) by
ψ ( , t ) = a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) Δ η ς ,
for 0 0 1 , 0 t t 0 t 1 , then ψ ( 0 , t ) = ψ ( , t 0 ) = a ( 0 , t 0 ) and
Ξ ( ϝ ( , t ) ) ψ ( , t ) ,
We obtain
ϝ ( , t ) Ξ 1 ψ ( , t ) .
Taking the ∇-derivative for (7) while employing Theorem 1 (iv), we have
ψ ( , t ) = 1 ( ) t 0 2 ( t ) ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ ϝ ( 1 ( ) , η ) Δ η 1 ( ) t 0 2 ( t ) ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ Ξ 1 ψ ( 1 ( ) , η ) Δ η ζ Ξ 1 ψ ( 1 ( ) , 2 ( t ) ) 1 ( ) t 0 2 ( t ) ( 1 ( ) , η ) f ( 1 ( ) , η ) Δ η
Inequality (9) can be written in the form
ψ ( , t ) ζ Ξ 1 ψ ( , t ) 1 ( ) t 0 2 ( t ) ( 1 ( ) , η ) f ( 1 ( ) , η ) Δ η .
Taking the ∇-integral for Inequality (10) obtains
G ψ ( , t ) G ψ ( 0 , t ) + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) Δ η ς G a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) Δ η ς .
Since ( 0 , t 0 ) Ω is chosen to be arbitrary,
ψ ( , t ) G 1 G a ( , t ) + 0 1 ( ) t 0 2 ( t ) ( ς , η ) f ( ς , η ) Δ η ς .
From (8) and (11), we obtain the desired result (5). We carry out the above procedure with ϵ > 0 instead of a ( , t ) when a ( , t ) = 0 and subsequently let ϵ 0 . □
Remark 1.
If we take T = R , 0 = 0 and t 0 = 0 in Lemma 1, then Inequality (4) becomes the inequality obtained in [26] (Lemma 2.1).

3. Main Results

In the following theorems, with the help of the Leibniz integral rule on time scales, Theorem 1 (item (iv)), and employing Lemma 1, we establish some new dynamics of the Gronwall–Bellman–Pachpatte type on time scales.
Theorem 2.
Let ϝ, a, f, 1 and 2 be as in Lemma 1. Let 1 , 2 C ( Ω , R + ) . If ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) ζ ϝ ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) Ξ 1 G 1 p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
for 0 1 , 0 t t 1 , where G is defined by (6) and
p ( , t ) = G a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
and 1 , t 1 Ω is chosen so that
p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom G 1 .
Proof. 
By the same steps in the proof of Lemma 1, we can obtain (13), with suitable changes. □
Remark 2.
If we take 2 ( , t ) = 0 , then Theorem 2 reduces to Lemma 1.
Corollary 1.
Let the functions ϝ, f, 1 , 2 , a, 1 and 2 be as in Theorem 2. Further suppose that q > p > 0 are constants. If ϝ ( , t ) satisfies
ϝ q ( , t ) a ( , t ) + q q p 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϝ p ( ς , η ) + 0 ς 2 ( χ , η ) ϝ p ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς 1 q p
where
p ( , t ) = a ( , t ) q p q + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς .
Proof. 
In Theorem 2, by letting Ξ ( ϝ ) = ϝ q , ζ ( ϝ ) = ϝ p , we have
G ( v ) = v 0 v ς ζ Ξ 1 ( ς ) = v 0 v ς ς p q q q p v q p q v 0 q p q , v v 0 > 0
and
G 1 ( v ) v 0 q p q + q p q v 1 q p
We obtain Inequality (16). □
Theorem 3.
Under the hypotheses of Theorem 2, suppose Ξ, ζ , ϖ C ( R + , R + ) are nondecreasing functions with Ξ , ζ , ϖ ( ϝ ) > 0 for ϝ > 0 and ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) ϖ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) ζ ϝ ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) Ξ 1 G 1 F 1 F p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
for 0 1 , 0 t t 1 , where G and p are as in (6) and (14), respectively, and
F ( v ) = v 0 v ς ϖ Ξ 1 G 1 ( ς ) , v v 0 > 0 , F ( + ) = +
and 1 , t 1 Ω is chosen so that
F p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom F 1 .
Proof. 
Assume that a ( , t ) > 0 . Fixing an arbitrary ( 0 , t 0 ) Ω , we define a positive and nondecreasing function ψ ( , t ) by
ψ ( , t ) = a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) ϖ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) ζ ϝ ( χ , η ) Δ χ Δ η ς ,
for 0 0 1 , 0 t t 0 t 1 , then ψ ( 0 , t ) = ψ ( , t 0 ) = a ( 0 , t 0 ) and
ϝ ( , t ) Ξ 1 ψ ( , t ) .
Taking the ∇-derivative for (20) and employing Theorem 1 (iv) gives
ψ ( , t ) = 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ ϝ ( 1 ( ) , η ) ϖ ϝ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) ζ ϝ ( χ , η ) Δ χ Δ η 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ Ξ 1 ψ ( 1 ( ) , η ) ϖ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) ζ Ξ 1 ψ ( χ , η ) Δ χ Δ η 1 ( ) . ζ Ξ 1 ψ ( 1 ( ) , 2 ( t ) ) × t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ϖ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η
From (22), we have
ψ ( , t ) ζ Ξ 1 ψ ( , t ) 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ϖ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η .
Taking the ∇-integral for (23) gives
G ψ ( , t ) G ψ ( 0 , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϖ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς G a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϖ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς .
Since ( 0 , t 0 ) Ω is chosen arbitrarily, the last inequality can be rewritten as
G ψ ( , t ) p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϖ Ξ 1 ψ ( ς , η ) Δ η ς .
Since p ( , t ) is a nondecreasing function, an application of Lemma 1 to (24) gives us
ψ ( , t ) G 1 F 1 F p ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς .
From (21) and (25), we obtain the desired inequality (18).
Now, we take the case a ( , t ) = 0 for some ( , t ) Ω . Let a ϵ ( , t ) = a ( , t ) + ϵ , for all ( , t ) Ω , where ϵ > 0 is arbitrary, and let a ϵ ( , t ) > 0 and a ϵ ( , t ) C ( Ω , R + ) be nondecreasing with respect to ( , t ) Ω . We carry out the above procedure with a ϵ ( , t ) > 0 instead of a ( , t ) , and we obtain
ϝ ( , t ) Ξ 1 G 1 F 1 F p ϵ ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
where
p ϵ ( , t ) = G a ϵ ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς .
Letting ϵ 0 + , we obtain (18). The proof is complete. □
Remark 3.
If we take T = R , 0 = 0 and t 0 = 0 in Theorem 3, then Inequality (17) becomes the inequality obtained in [26] (Theorem 2.2(A_2)).
Corollary 2.
Let the functions ϝ, a, f, 1 , 2 , 1 and 2 be as in Theorem 2. Further suppose that q, p and r are constants with p > 0 , r > 0 and q > p + r . If ϝ ( , t ) satisfies
ϝ q ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϝ p ( ς , η ) ϝ r ( ς , η ) + 0 ς 2 ( χ , η ) ϝ p ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) p ( , t ) q p r q p + q p r q 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς 1 q p r
where
p ( , t ) = a ( , t ) q p q + q p q 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
Proof. 
An application of Theorem 3 with Ξ ϝ = ϝ q , ζ ϝ = ϝ p , and ϖ ϝ = ϝ r yields the desired inequality (27). □
Theorem 4.
Under the hypotheses of Theorem 3, if ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) ϖ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) ζ ϝ ( χ , η ) ϖ ϝ ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) Ξ 1 G 1 F 1 p 0 ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
for 0 1 , 0 t t 1 where
p 0 ( , t ) = F ( G a ( , t ) ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
and 1 , t 1 Ω is chosen so that
p 0 ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom F 1 .
Proof. 
Assume that a ( , t ) > 0 . Fixing an arbitrary ( 0 , t 0 ) Ω , we define a positive and nondecreasing function ψ ( , t ) by
ψ ( , t ) = a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ ϝ ( ς , η ) ϖ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) ζ ϝ ( χ , η ) ϖ ϝ ( χ , η ) Δ χ Δ η ς
for 0 0 1 , 0 t t 0 t 1 , then ψ ( 0 , t ) = ψ ( , t 0 ) = a ( 0 , t 0 ) , and
ϝ ( , t ) Ξ 1 ψ ( , t ) .
By the same steps as in the proof of Theorem 3, we obtain
ψ ( , t ) G 1 G a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϖ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) ϖ Ξ 1 ψ ( χ , η ) Δ χ Δ η ς .
We define a nonnegative and nondecreasing function v ( , t ) by
v ( , t ) = G a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϖ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) ϖ Ξ 1 ψ ( χ , η ) Δ χ Δ η ς
then v ( 0 , t ) = v ( , t 0 ) = G a ( 0 , t 0 ) ,
ψ ( , t ) G 1 v ( , t )
and then, employing Theorem 1 (iv), we have
v ( , t ) 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ϖ Ξ 1 G 1 v ( 1 ( ) , t ) + 0 1 ( ) 2 ( χ , η ) ϖ Ξ 1 G 1 v ( χ , t ) Δ χ Δ η 1 ( ) ϖ Ξ 1 G 1 v ( 1 ( ) , 2 ( t ) ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η
or
v ( , t ) ϖ Ξ 1 G 1 v ( , t ) 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η .
Taking the ∇-integral for the above inequality gives
F ( v ( , t ) ) F ( v ( 0 , t ) ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
or
v ( , t ) F 1 F ( G a ( 0 , t 0 ) ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς .
From (30)–(32), and since ( 0 , t 0 ) Ω is chosen arbitrarily, we obtain the desired inequality (29). If a ( , t ) = 0 , we carry out the above procedure with ϵ > 0 instead of a ( , t ) and subsequently let ϵ 0 . The proof is complete. □
Remark 4.
If we take T = R and 0 = 0 and t 0 = 0 in Theorem 4, then Inequality (28) becomes the inequality obtained in [26] (Theorem 2.2(A 3 )).
Corollary 3.
Under the hypotheses of Corollary 2, if ϝ ( , t ) satisfies
ϝ q ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ϝ p ( ς , η ) ϝ r ( ς , η ) + 0 ς 2 ( χ , η ) ϝ p ( χ , η ) ϝ r ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) p 0 ( , t ) + q p r q 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς 1 q p r
where
p 0 ( , t ) = a , t q p r q + q p r q 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
Proof. 
An application of Theorem 4 with Ξ ϝ = ϝ q , ζ ϝ = ϝ p , and ϖ ϝ = ϝ r yields the desired inequality (34). □
Theorem 5.
Under the hypotheses of Theorem 3, if ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) ϖ ϝ ς , η × f ( ς , η ) ζ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ , t Ξ 1 G 1 1 F 1 1 F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
for 0 2 , 0 t t 2 , where
G 1 ( v ) = v 0 v ς ϖ Ξ 1 ( ς ) , v v 0 > 0 , G 1 ( + ) = v 0 + ς ϖ Ξ 1 ( ς ) = +
F 1 ( v ) = v 0 v ς ζ Ξ 1 G 1 1 ς , v v 0 > 0 , F 1 ( + ) = +
p 1 , t = G 1 ( a ( , t ) ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
and 2 , t 2 Ω is chosen so that
F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom F 1 1 .
Proof. 
Suppose that a ( , t ) > 0 . Fixing an arbitrary ( 0 , t 0 ) Ω , we define a positive and nondecreasing function ψ ( , t ) by
ψ , t = a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) ϖ ϝ ς , η f ( ς , η ) ζ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
for 0 0 2 , 0 t t 0 t 2 , then ψ 0 , t = ψ ( , t 0 ) = a ( 0 , t 0 ) ,
ϝ ( , t ) Ξ 1 ψ ( , t ) .
Employing Theorem 1 (iv),
ψ ( , t ) 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) η Ξ 1 ψ ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η 1 ( ) η Ξ 1 ψ 1 ( ) , 2 ( t ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η
then
ψ ( , t ) η Ξ 1 ψ , t 1 ( ) t 0 2 ( t ) 1 ( 1 ( ) , η ) f ( 1 ( ) , η ) ζ Ξ 1 ψ ( 1 ( ) , η ) + 0 1 ( ) 2 ( χ , η ) Δ χ Δ η .
Taking the ∇-integral for the above inequality gives
G 1 ψ , t G 1 ψ 0 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
then
G 1 ψ , t G 1 a ( 0 , t 0 ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ Ξ 1 ψ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς .
Since ( 0 , t 0 ) Ω is chosen to be arbitrary, the last inequality can be restated as
G 1 ψ , t p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ζ Ξ 1 ψ ( ς , η ) Δ η ς
It is easy to observe that p 1 , t is a positive and nondecreasing function for all ( , t ) Ω , and an application of Lemma 1 to (41) yields the inequality
ψ , t G 1 1 F 1 1 F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς .
From (40) and (42), we obtain the desired inequality (36).
If a ( , t ) = 0 , we carry out the above procedure with ϵ > 0 instead of a ( , t ) and subsequently let ϵ 0 . The proof is complete. □
Remark 5.
If we take T = R and 0 = 0 and t 0 = 0 in Theorem 5, then Inequality (36) becomes the inequality obtained in [26] (Theorem 2.7).
Theorem 6.
Under the hypotheses of Theorem 3 and letting p be a nonnegative constant, if ϝ ( , t ) satisfies
Ξ ϝ ( , t ) a ( , t ) + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) ϝ p ς , η × f ( ς , η ) ζ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ , t Ξ 1 G 1 1 F 1 1 F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς
for 0 2 , 0 t t 2 , where
G 1 ( v ) = v 0 v ς Ξ 1 ( ς ) p , v v 0 > 0 , G 1 ( + ) = v 0 + ς Ξ 1 ( ς ) p = +
and F 1 , p 1 are as in Theorem 5 and 2 , t 2 Ω is chosen so that
F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς Dom F 1 1 .
Proof. 
An application of Theorem 5 with ϖ ϝ = ϝ p yields the desired inequality (44). □
Remark 6.
Taking T = R , the inequality established in Theorem 6 generalizes [30] (Theorem 1) (with p = 1 , a ( , t ) = b ( ) + c ( t ) , 0 = 0 , t 0 = 0 , 1 ( ς , η ) f ( ς , η ) = h ( ς , η ) , and 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ = g ( ς , η ) ).
Corollary 4.
Under the hypotheses of Theorem 6 and q > p > 0 being constants, if ϝ ( , t ) satisfies
ϝ q ( , t ) a ( , t ) + p p q 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) ϝ p ς , η × f ( ς , η ) ζ ϝ ( ς , η ) + 0 ς 2 ( χ , η ) Δ χ Δ η ς
for ( , t ) Ω , then
ϝ ( , t ) F 1 1 F 1 p 1 , t + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς 1 q p
for 0 2 , 0 t t 2 , where
p 1 , t = a ( , t ) q p q + 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ Δ η ς
and F 1 is defined in Theorem 6.
Proof. 
An application of Theorem 6 with Ξ ϝ ( , t ) = ϝ p to (46) yields Inequality (47); to save space, we omit the details. □
Remark 7.
Taking T = R , 0 = 0 , t 0 = 0 , a ( , t ) = b ( ) + c ( t ) , 1 ( ς , η ) f ( ς , η ) = h ( ς , η ) , and 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ = g ( ς , η ) in Corollary 4, we obtain [31] (Theorem 1).
Remark 8.
Taking T = R , 0 = 0 , t 0 = 0 , a ( , t ) = c p p q , 1 ( ς , η ) f ( ς , η ) = h ( η ) , and 1 ( ς , η ) 0 ς 2 ( χ , η ) Δ χ = g ( η ) and keeping t fixed in Corollary 4, we obtain [32] (Theorem 2.1).

4. Application

In the following, we discus the boundedness of the solutions of the initial boundary value problem for the partial delay dynamic equation of the form
( ψ q ) Δ t ( , t ) = A , t , ψ h 1 ( ) , t h 2 ( t ) , 0 B ς , t , ψ ( ς h 1 ( ς ) , t ) Δ ς
ψ ( , t 0 ) = a 1 ( ) , ψ ( 0 , t ) = a 2 ( t ) , a 1 ( 0 ) = a t 0 ( 0 ) = 0
for ( , t ) Ω , where ψ , b C Ω , R + , A C ( Ω × R 2 , R ) , B C ζ × R , R and h 1 C 1 T 1 , R + , h 2 C 1 T 2 , R + are nondecreasing functions such that h 1 ( ) on T 1 , h 2 ( t ) t on T 2 , and h 1 ( ) < 1 , h 2 ( t ) < 1 .
Theorem 7.
Assume that the functions a 1 , a 2 , A, B in (48) satisfy the conditions
a 1 ( ) + a 2 ( t ) a ( , t )
A ς , η , ψ , ϝ q q p 1 ( ς , η ) f ( ς , η ) ψ p + ϝ
B χ , η , ψ 2 ( χ , η ) ψ p
where a ( , t ) , 1 ( ς , η ) , f ( ς , η ) , and 2 ( χ , η ) are as in Theorem 2, and q > p > 0 are constants. If ψ ( , t ) satisfies (48), then
ψ ( , t ) p ( , t ) + M 1 M 2 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) Δ η ς 1 q p
where
p ( , t ) = a ( , t ) q p q + M 1 M 2 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) M 1 0 ς 2 ( χ , η ) Δ χ Δ η ς
and
M 1 = M a x I 1 1 1 h 1 ( ) , M 2 = M a x t I 2 1 1 h 2 ( t )
and 1 ( γ , ξ ) = 1 γ + h 1 ( ς ) , ξ + h 2 ( η ) , 2 μ , ξ = 2 μ , ξ + h 2 ( η ) , f ( γ , ξ ) = f γ + h 1 ( ς ) , ξ + h 2 ( η ) .
Proof. 
If ψ ( , t ) is any solution of (48), then
ψ q ( , t ) = a 1 ( ) + a 2 ( t )
+ 0 t 0 t A ς , η , ψ ς h 1 ( ς ) , η h 2 ( η ) , 0 ς B χ , η , ψ ( χ h 1 ( χ ) , η ) Δ χ Δ η ς .
Using the conditions (49)–(51) in (53), we obtain
ψ ( , t ) q a ( , t ) + q p q 0 t 0 t 1 ( ς , η ) f ( ς , η ) ψ ς h 1 ( ς ) , η h 2 ( η ) p + 0 ς 2 ( χ , η ) ψ ( χ , η ) p Δ χ Δ η ς .
Now, making a change of variables on the right side of (54), ς h 1 ( ς ) = γ , η h 2 ( η ) = ξ , h 1 ( ) = 1 ( ) for T 1 , t h 2 ( t ) = 2 ( t ) for t T 2 , we obtain the inequality
ψ ( , t ) q a ( , t ) + q p q M 1 M 2 0 1 ( ) t 0 2 ( t ) 1 ( γ , ξ ) f ( γ , ξ ) ψ γ , ξ p + M 1 0 γ 2 μ , ξ ψ ( μ , η ) p Δ μ Δ ξ Δ γ .
We can rewrite Inequality (55) as follows:
ψ ( , t ) q a ( , t ) + q p q M 1 M 2 0 1 ( ) t 0 2 ( t ) 1 ( ς , η ) f ( ς , η ) ψ ς , η p + M 1 0 ς 2 χ , η ψ ( χ , η ) p Δ χ Δ η ς .
As an application of Corollary 1 to (56) with ϝ ( , t ) = ψ ( , t ) , we obtain the desired inequality (52). □

5. Conclusions

Using the Leibniz integral rule on time scales, we examined additional generalizations of the integral retarded inequality presented in [26,27] and generalized a few of these inequalities to a generic time scale. We also looked at the qualitative characteristics of various different dynamic equations’ time scale solutions. As future work, we intend to generalize these results by using conformable calculus on time scales.

Author Contributions

Conceptualization, A.A.E.-D., D.B. and J.A.; formal analysis, A.A.E.-D., D.B. and J.A.; investigation, A.A.E.-D., D.B. and J.A.; writing—original draft preparation, A.A.E.-D., D.B. and J.A.; writing—review and editing, A.A.E.-D., D.B. and J.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universitat Wurzburg, Wurzburg, Germany, 1988. [Google Scholar]
  2. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
  3. Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhauser: Boston, MA, USA, 2003. [Google Scholar]
  4. Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
  5. Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
  6. Bohner, M.; Matthews, T. The Grüss inequality on time scales. Commun. Math. Anal. 2007, 3, 1–8. [Google Scholar]
  7. Bohner, M.; Matthews, T. Ostrowski inequalities on time scales. J. Inequalities Pure Appl. Math. 2008, 9, 8. [Google Scholar]
  8. Dinu, C. Hermite-Hadamard inequality on time scales. J. Inequalities Appl. 2008, 2008, 287947. [Google Scholar] [CrossRef]
  9. El-Deeb, A.A. Some Gronwall-bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 2018, 26, 1–17. [Google Scholar] [CrossRef]
  10. El-Deeb, A.A.; Xu, H.; Abdeldaim, A.; Wang, G. Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 19, 130. [Google Scholar] [CrossRef]
  11. El-Deeb, A.A.; Rashid, S. On some new double dynamic inequalities associated with leibniz integral rule on time scales. Adv. Differ. Equ. 2021, 2021, 125. [Google Scholar] [CrossRef]
  12. Kh, F.M.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 323. [Google Scholar] [CrossRef]
  13. Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
  14. Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales. J. Inequal. Pure Appl. Math. 2005, 6, 1–23. [Google Scholar]
  15. Zakarya, M.; Altanji, M.; AlNemer, G.; Abd El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional reverse coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
  16. Rezk, H.M.; AlNemer, G.; Saied, A.I.; Bazighifan, O.; Zakarya, M. Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry 2022, 14, 750. [Google Scholar] [CrossRef]
  17. AlNemer, G.; Zakarya, M.; Abd El-Hamid, H.A.; Agarwal, P.; Rezk, H.M. Some dynamic Hilbert-type inequalities on time scales. Symmetry 2020, 12, 1410. [Google Scholar] [CrossRef]
  18. El-Deeb, A.A.; Makharesh, S.D.; Askar, S.S.; Awrejcewicz, J. A variety of Nabla Hardy’s type inequality on time scales. Mathematics 2022, 10, 722. [Google Scholar] [CrossRef]
  19. El-Deeb, A.A.; Baleanu, D. Some new dynamic Gronwall-Bellman-Pachpatte type inequalities with delay on time scales and certain applications. J. Inequalities Appl. 2022, 45. [Google Scholar] [CrossRef]
  20. El-Deeb, A.A.; Moaaz, O.; Baleanu, D.; Askar, S.S. A variety of dynamic α-conformable Steffensen-type inequality on a time scale measure space. AIMS Math. 2022, 7, 11382–11398. [Google Scholar] [CrossRef]
  21. El-Deeb, A.A.; Akin, E.; Kaymakcalan, B. Generalization of Mitrinović-Pečarić inequalities on time scales. Rocky Mt. J. Math. 2021, 51, 1909–1918. [Google Scholar] [CrossRef]
  22. El-Deeb, A.A.; Makharesh, S.D.; Nwaeze, E.R.; Iyiola, O.S.; Baleanu, D. On nabla conformable fractional Hardy-type inequalities on arbitrary time scales. J. Inequalities Appl. 2021, 192. [Google Scholar] [CrossRef]
  23. El-Deeb, A.A.; Awrejcewicz, J. Novel Fractional Dynamic Hardy–Hilbert-Type Inequalities on Time Scales with Applications. Mathematics 2021, 9, 2964. [Google Scholar] [CrossRef]
  24. Bellman, R. The stability of solutions of linear differential equations. Duke Math. J. 1943, 10, 643–647. [Google Scholar] [CrossRef]
  25. Pachpatte, B.G. On some fundamental integral inequalities and their discrete analogues. J. Inequalities Pure Appl. Math. 2001, 2, 1–13. [Google Scholar]
  26. Boudeliou, A.; Khellaf, H. On some delay nonlinear integral inequalities in two independent variables. J. Inequalities Appl. 2015, 2015, 313. [Google Scholar] [CrossRef]
  27. Anderson, D.R. Dynamic double integral inequalities in two independent variables on time scales. J. Math. Inequalities 2008, 2, 163–184. [Google Scholar] [CrossRef]
  28. Ferreira, R.A.C.; Torres, D.F.M. Generalized retarded integral inequalities. Appl. Math. Lett. 2009, 22, 876–881. [Google Scholar] [CrossRef] [Green Version]
  29. Ma, Q.-H.; Pecaric, J. Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. Theory Methods Appl. 2008, 69, 393–407. [Google Scholar] [CrossRef]
  30. Tian, Y.; Fan, M.; Meng, F. A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 2013, 221, 239–248. [Google Scholar] [CrossRef]
  31. Xu, R.; Sun, Y.G. On retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 2006, 182, 1260–1266. [Google Scholar] [CrossRef]
  32. Sun, Y.G. On retarded integral inequalities and their applications. J. Math. Anal. Appl. 2005, 301, 265–275. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Deeb, A.A.; Baleanu, D.; Awrejcewicz, J. (Δ∇)-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications. Symmetry 2022, 14, 1867. https://doi.org/10.3390/sym14091867

AMA Style

El-Deeb AA, Baleanu D, Awrejcewicz J. (Δ∇)-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications. Symmetry. 2022; 14(9):1867. https://doi.org/10.3390/sym14091867

Chicago/Turabian Style

El-Deeb, Ahmed A., Dumitru Baleanu, and Jan Awrejcewicz. 2022. "(Δ∇)-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications" Symmetry 14, no. 9: 1867. https://doi.org/10.3390/sym14091867

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop